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Abstract
In the minimum constraint removal problem, we are given a set of geometric objects as obstacles
in the plane, and we want to find the minimum number of obstacles that must be removed to reach
a target point t from the source point s by an obstacle-free path. The problem is known to be
intractable, and (perhaps surprisingly) no sub-linear approximations are known even for simple
obstacles such as rectangles and disks. The main result of our paper is a new approximation
technique that gives O(

√
n)-approximation for rectangles, disks as well as rectilinear polygons.

The technique also gives O(
√
n)-approximation for the minimum color path problem in graphs.

We also present some inapproximability results for the geometric constraint removal problem.
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1 Introduction

Given a set S of geometric objects as obstacles in the plane, a path is called obstacle-free if
it does not intersect the interior of any obstacle. In the minimum constraint removal (MCR)
problem, the goal is to remove a minimum-sized subset S ′ ⊆ S such that the remaining set
S \ S ′ admits an obstacle-free path between a source point s and the target point t. The
problem is known to be NP-complete even when the obstacles have very simple geometry
such as rectangles or line segments. The MCR problem is also related to the minimum color
path (MCP) problem, where the goal is to find a path in a graph using the minimum number

1 The work was partially done when the author was visiting University of California, Santa Barbara.
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2:2 Approximation Bounds for Minimum Constraint Removal

of colors. In the vertex-colored version of the problem, each vertex v of a graph G = (V,E)
is associated with a set of colors χ(v) ⊆ C = {1, 2, . . . , |C|}, and the goal is to find a path
between two fixed vertices s and t (s-t path) that minimizes the total number of colors along
the path. Similarly, in the edge-colored version, each edge of G has an associated set of
colors, and the s-t path must minimize the total number of colors along the path.

The geometric constraint removal problem can be cast as a minimum color path problem
by constructing a graph on the arrangement formed by the obstacles. The arrangement A(S)
of S is a partition induced by the obstacles, whose faces are the two-dimensional connected
regions, and whose edges are segments of the obstacle boundaries. We now define a planar
graph GA whose vertices are in one-to-one correspondence with the faces of the arrangement,
and whose edges join two neighboring faces. By associating each obstacle with a unique
color, we obtain a version of the minimum color path problem—an s–t path has exactly as
many colors along it as the number of obstacles it crosses. However, it is worth pointing
out that the number of vertices in GA can be quadratic in the size of the geometric input: a
set of n geometric obstacles, each with a constant number of boundary edges, can create an
Ω(n2) size arrangement.

The minimum color path problem is also NP-complete, and by a reduction from Set
Cover it is also NP-hard to approximate to a factor better than o(logn) even if the graph is
planar [8, 14,20]. In [13], Hassin et al. solve a special case of the MCP problem where each
edge has exactly one color. For that special case, they present an O(

√
|V |)-approximation

algorithm. However, for the general MCP problem, no sub-linear algorithm appears to be
known to the best of our knowledge.

The geometric minimum constraint removal problem has been studied under different
names across multiple research communities, including sensor networks and robotics. In
the sensor networks, the problem is called barrier resilience, in which a collection of sensors
are modeled for providing (overlapping) geometric coverage in the plane, and the network’s
resilience is measured by the minimum number of sensors whose removal creates a sensor-
avoiding s–t path. The most common form of geometric obstacles considered in sensor
network applications are circular disks. When all disks have the same (unit) radius, a
2-approximation is known due to Chan and Kirkpatrick [5], who build and improve upon the
earlier work of Bereg and Kirkpatrick [3]. However, even for this simple case, the complexity
of minimum constraint removal is an unsolved open problem [5]. In [5, 17], constant factor
approximations are proposed for restricted versions of arbitrary radii disks. However, in
general, when disks have arbitrary radii, no sub-linear approximation with provable guarantee
is known. The problem has also been studied for other types of obstacles, mainly from
the perspective of time complexity. The problem has been shown to be NP-complete for
convex obstacles [11], for line segments [19], even in the bounded density case [2, 10], and for
axis-parallel rectangles with aspect ratio close to one [17].

In robotics, the minimum constraint removal problem models the motion planning problem
of multi-articulated robot [11,14]. Suppose we have a physical environment constaining a
disjoint set of impenetrable obstacles in the plane, and a robot with two degrees of freedom.
Then the configuration space approach to motion planning shrinks the robot to a point
while simultaneously expanding the obstacle by taking their Minkowski sum with the robot’s
geometry. The result is our minimum constraint removal problem: a set of two-dimensional
intersecting obstacles that may have no feasible path for the robot, and so some obstacles
need to be removed.

Finally, the problem has also been studied through the lenses of parameterized complex-
ity [10, 17], and exact and heuristic algorithms [9, 14]. It is also loosely related to a shortest
path problem in the plane [1, 15], where given a set of disjoint obstacles, the goal is to find
an Euclidean shortest s-t path that intersects at most k obstacles.
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1.1 Our Results
In this work, we make progress on both the graph and the geometric versions of MCP
by obtaining improved approximation results. All these approximations are achieved in
polynomial time. For the minimum constraint removal problem, we obtain the following
results.

We present an O(
√
n)-approximation for rectilinear polygons, where n denotes the total

number of vertices of the polygons. No sublinear approximation was known even for
squares.
We present an O(

√
n)-approximation for disks, where n denotes the number of disks. For

arbitrary disks, the only approximation results known are in the restricted cases, where
either the crossing patterns of the paths are limited or the aspect ratio and the density
are bounded.

Prior approximation algorithms for MCR proceed by establishing a good bound on the
number of times an optimal path enters a removed obstacle. For the obstacles we consider,
i.e., rectilinear polygons and disks, this bound is very large. Thus the previous approaches
are inadequate to obtain the above mentioned results. Our main new idea is to use a filtering
step, which removes a small number of obstacles that are potentially expensive in terms of
the number of times an optimal path enters those obstacles.

The above results are based on an algorithmic framework, which uses the filtering step
mentioned before. As a byproduct, the framework also gives an O(

√
|V |)-approximation for

MCP on vertex-colored graphs.
We also obtain a few hardness results for MCR which give a better understanding of the

problem. We show that for rectilinear polygons, the problem is NP-hard to approximate
within a factor better than 2. The same result holds even for convex polygons. We also
prove the APX-hardness of the problem in a more restricted case, where the obstacles are
axis-parallel rectangles.

The framework is described in Section 2. The application of the framework to the MCR
problem is discussed in Section 3. Finally we describe the hardness results in Section 4.
Throughout this paper, the proofs of lemmas and theorems marked with (∗) are given in the
appendix due to space constraints.

2 An Algorithmic Framework

We begin our discussion by introducing a generic framework that yields a sublinear ap-
proximation for minimum color path problems on graphs. In the later sections, we apply
this framework to achieve similar approximation bounds for the MCR problem. Roughly
speaking, the framework comprises of two main steps. In the first step, a ‘small’ subset of
the colors are removed from the instance based on some conditions. In the second stage, an
approximation of the minimum color path is computed using a shortest path algorithm. We
start with some basic definitions.

As an input to the framework, we assume that we are given a graph G = (V,E), the
source vertex s, the target vertex t, and a set of colors C, such that each vertex v ∈ V is
assigned a subset χ(v) ⊆ C of colors. We will refer to such a graph as a colored graph and
denote it by G = (V,E, C). we define the set of colors χ(π) used by π to be the union of the
colors of vertices on this path. That is, χ(π) =

⋃
v∈π χ(v).

I Definition 1. Any path π in G is a k-color path if the number of colors used |χ(π)| is k.

APPROX/RANDOM 2018



2:4 Approximation Bounds for Minimum Constraint Removal

An algorithm is called an α-approximation algorithm for computing a k-color path if
it satisfies the following two conditions: (1) if there exists a k-color path π from s to t, it
computes a path π∗ such that |χ(π∗)| ≤ αk, and (2) if there is no k-color path from s to t, it
returns an arbitrary s-t path. The following is straightforward.

I Lemma 2. If there exists an α-approximation algorithm to compute a k-color path from
s to t then there also exists an α-approximation algorithm for computing a minimum color
path from s to t.

Proof. We try all possible values k = 1, 2, . . . , |C| and let πk be the path returned by
the approximation algorithm for computing a k-color path for a given value of k. Let j
be the value such that χ(πj) has smallest cardinality over all χ(πk). Now, let l be the
number of colors used by a minimum color path, then |χ(πl)| must be at most αl. Clearly,
|χ(πj)| ≤ |χ(πl)| ≤ αl and therefore πj is an α-approximation for computing a minimum
color path. J

From Lemma 2 it follows that computing an approximation of a k-color path is sufficient,
and therefore in the rest of our discussion, we work towards that goal. Next, we describe the
details of our framework.

2.1 Approximation Framework
As an input to the framework, we assume that we are given a colored graph G = (V,E, C),
and an integer k. The key idea behind our approximation framework is to define a notion of
neighborhood for the colors in C, and ‘discard’ the colors that have dense neighborhoods.

I Definition 3. Let P be an arbitrary set of objects and β be a parameter. We define
neighborhood N : C → 2P to be a mapping from C to subsets of P that satisfies the following
properties.
1. (Bounded-Size Property) Sum of cardinalities of all neighborhoods

∑
C∈C |N (C)| is

O(kβ2)
2. (Bounded-Occurrence Property) If there exists a k-color path in G, then there also

exists a k-color path π∗ in G such that, for any color C ∈ C, the number of times C
appears on π∗ is at most O(|N (C)|).

The set P in the above definition can be any set of objects. For example, in MCP problem
P is the set of vertices of the graph. In the geometric MCR, P is a set of points in the plane.
We now describe our approximation algorithm which we will refer to as APPROX-CORE.

Algorithm APPROX-CORE

1. Construct the neighborhood N (C) for each color C ∈ C.
2. For all C ∈ C, remove all occurrences of the color C from the graph G if |N (C)| ≥ β. Let

G′ be the modified graph after removing all such colors.
3. For every vertex v in G′, assign an integer weight |χ(v)| on v.
4. Compute a minimum weight path π from s to t in G′ using Dijkstra’s Algorithm. Return

π.

I Lemma 4. Given the set P and a parameter β, the algorithm APPROX-CORE gives an
O(β)-approximation for the k-color path in G.
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Proof. Assume that there exists a k-color path in G. Otherwise, the proof is trivial as the
algorithm always returns a path. Let C1 be the set of colors removed during step 2 of the
algorithm, and C2 be the set of colors in G′ that appear on the path π returned by the
algorithm. Then, the total number of colors in G that may appear on π is at most |C1|+ |C2|.

First we compute a bound on the size of C1. Observe that the neighborhood of each color
C ∈ C1 has size at least β. Therefore, we have:∑

C∈C1

|N (C)| ≤
∑
C∈C
|N (C)|

=⇒ |C1| · β ≤ O(kβ2) By the bounded-size property of N
=⇒ |C1| ≤ ckβ for some constant c

Next, we compute a bound on size of C2 . Towards this end, observe that the neighborhood
N (C) of every color C in G′ has fewer than β colors. By the bounded-occurrence property
of the neighborhood N , there exists a k-color path π∗ in G such that for each C ∈ C, the
number of times C appears on π∗ is at most O(|N (C)|). Therefore, it follows that any color
C in G′ appears on π∗ at most O(β) times. In other words, there exists a path in G′ that
has weight at most c′kβ for another constant c′. Therefore the number of colors used by the
minimum weight path π is at most c′kβ.

Hence, the total number of colors in C that appear on π is at most |C1|+ |C2| = (c+c′) ·kβ,
which is an O(β)-approximation. J

We obtain the following theorem.

I Theorem 5. Given a colored graph G = (V,E, C), suppose a neighborhood N for G can
be constructed in polynomial time that satisfies the bounded-size and bounded-occurrence
property. Then there exists a polynomial time algorithm that achieves an O(β)-approximation
for computing a k-color path in G.

Therefore, in order to achieve an approximation for the k-color path, it just suffices
to construct a neighborhood N , that satisfies the bounded-size and bounded-occurrence
properties. In the next section, we illustrate this construction for MCP on vertex-colored
graphs.

2.2 Application to Minimum Color Path
In this section, we will apply the above framework to achieve O(

√
n)−approximation for

MCP on a vertex-colored graph G = (V,E, C) with n vertices. Our goal is to simply
compute a neighborhood N for a k-color path in G such that N has bounded-size O(kn)
and satisfies the bounded-occurrence property. Using Lemma 2 and β =

√
n in Theorem 5,

an O(
√
n)-approximation for MCP follows.

We define neighborhood N (C) of each color C to be the set {v ∈ V | C ∈ χ(v) and
|χ(v)| ≤ k}. The bounded-occurrence property is easily satisfied because a k-color path
πk will never visit vertices that contain more than k colors, and since πk is simple, each
occurrence of a color C on the path can be uniquely charged to a vertex in N (C). To see
that the bounded-size property is satisfied, we note the following.∑

C∈C
|N (C)| =

∑
v∈V :|χ(v)|≤k

|χ(v)| ≤ O(kn).

I Theorem 6. There exists an O(
√
n)-approximation algorithm for MCP on vertex-colored

graphs.

APPROX/RANDOM 2018



2:6 Approximation Bounds for Minimum Constraint Removal

Application to Minimum Label Path. As another example application for the framework,
we consider a special case of MCP when each edge has exactly one color (called its label). This
problem has been well studied [4,12,13] under the name minimum label path. Hassin et al. [13]
gave an O(

√
n)-approximation for this problem on general graphs. Using our framework and

the following simple definition of neighborhood, we can achieve an O(
√

n
OPT )-approximation

if the number of edges in G is O(n). Here OPT is the number of labels used by any minimum
label s-t path.

For the sake of applying the framework, we transform the input edge-colored graph
G = (V,E, C) into a vertex-colored graph H by adding a vertex corresponding to each edge.
The color corresponding to an old edge is moved to the new vertex. Now, for each new vertex
v that has color C, we include both neighbors (old vertices) of v in H to the neighborhood
of C. The bounded-occurrence property is straightforward. For the bound on size, observe
that an old vertex v can be in at most degree(v) neighborhoods, so sum of cardinality of all
neighborhoods is at most 2|E|. Since |E| = O(n), the size of N is O(n) = O(nk · k). With
β =

√
n/k, Theorem 5 and Lemma 2 give an O(

√
n

OPT )-approximation.

3 Application to Geometric Objects

In this section, we apply our approximation framework to achieve sublinear approximation
for MCR when the obstacles are rectilinear polygons (Section 3.1) and disks of arbitrary
radii (Section 3.2). Observe that if m is the number of cells of the input arrangement
A of obstacles in S, applying Theorem 6 on the graph obtained from A easily gives a
O(
√
m)-approximation. However, m can be Ω(n2) and therefore this approach does not give

us an O(
√
n)-approximation. Here n is the number of vertices if obstacles are polygonal

or the number of disks otherwise. By exploiting the geometry of obstacles, we show how
to construct a colored graph G = (V,E, C) and a sparse neighborhood N even when the
underlying colored graph G can have Ω(n2) complexity.

Recall that, there are two main steps for applying the framework. First we need to
construct the colored graph G such that an s–t path in the plane that removes the minimum
number of constraints, corresponds to a path in G that uses the minimum number of colors.
Next, we need to construct the neighborhood N for colors in G such that it satisfies the
bounded-size and bounded-occurrence properties. Note that for technical reasons, the graph
G we construct for the geometric instances has colors assigned on edges. Indeed, for the sake
of applying the framework, one can easily transform it into a vertex-colored graph by adding
a vertex corresponding to each edge. We begin by revisiting some necessary background.

Any arrangement of obstacles in the plane can be partitioned into two distinct regions
namely the obstacles, and free space, that is the region of the plane not occupied by obstacles.
Without loss of generality, we assume that the points s and t lie in free space, as we must
remove all the obstacles that are incident to either s or t in order to find an obstacle free s–t
path. We say that a path π crosses an obstacle S if π intersects the interior of S. Note that,
as s and t lie in free space, if π crosses S, π must intersect the boundary of S transversally.

Consider an optimal path π that removes the minimum number of obstacles. It is easy
to see that π will cross an obstacle S if and only if S was removed from input. Therefore,
removing an obstacle is equivalent to crossing it. In the following, we introduce the notion of
a k-crossing path.

I Definition 7. A path π in the plane is called a k-crossing path if it crosses exactly k

obstacles.
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It is easy to see that if each obstacle is assigned a unique color and we assign color to a
path whenever it enters an obstacle, then a k-crossing path π uses exactly k colors. Observe
that although the space of k-crossing paths is infinite, we want to establish a one to one
correspondence between the path in the plane that crosses minimum number of obstacles
and a path in G that uses the minimum number of colors.

I Definition 8. Given a set S of obstacles in the plane, a one to one mappingM : S → C from
a set of obstacles S to a set of colors C = {1, 2, . . . , |C|}, we say that a graphG = (V, E, M(S))
with two fixed vertices vs, vt is a valid colored graph for the input arrangement if the following
conditions hold:
1. if there is a k-color vs-vt path in G, then there is also a j-crossing s-t path in the plane

for some j ≤ k, and
2. if there is a k-crossing s-t path in the plane, then there is also a j-color path from vs to

vt in G for some j ≤ k.

The first condition is typically established by fixing an embedding for the edges of G in
the plane. From the above discussion and using Lemma 2 and Theorem 5 with β =

√
n, we

have the following.

I Lemma 9. Suppose we are given a valid colored graph G = (V,E, C) for an arrangement
of the set S of input obstacles in the plane, such that there is a k-color path in G. If we can
construct the neighborhoods N (S) for all obstacles S ∈ S such that, the total size across all
neighborhoods is O(kn) (bounded-size), and there exists a k-color path π in G from vs to vt
such that for any obstacle S ∈ S, the corresponding color appears on π at most O(|N (S)|)
times (bounded-occurrence), then APPROX-CORE achieves an O(

√
n)-approximation for

MCR.

3.1 An O(
√

n)-approximation for Rectilinear Polygons
We begin by describing our construction of a valid colored graph G = (V, E, M(S)) for the
input set of obstacles S. Without loss of generality, we assume that the mappingM simply
assigns a unique color Ci ∈ C to each obstacle Si ∈ S.

Graph Construction. Let V be the set of vertices of all obstacles in S (including s and t).
Let vs and vt be the vertices corresponding to the points s and t, respectively. We build a
complete graph over this vertex set by adding an edge (u, v) to E for every pair of vertices
u, v ∈ V . We define a rectilinear embedding of an edge e = (u, v) in the plane as follows.

Without loss of generality, assume u lies below and to the left of v, and let x be the
point where a horizontal ray from u and a vertical ray from v intersect. The rectilinear
path πuv = ux → xv is called the embedding of edge e. We assign e the colors
corresponding to obstacles, whose boundaries are intersected by πuv transversally.

Roughly speaking, we assign a color to an edge if it intersects both the interior and
boundary of the corresponding obstacle, i.e., when the edge enters or exits the obstacle. It is
easy to see that with the above construction, the first condition of Definition 8 is satisfied.
For the second requirement, we make the following claim.

I Lemma 10. If there exists a k-crossing s-t path π∗ in the plane, then there exists a vs-vt
path π in G that uses at most k colors.

APPROX/RANDOM 2018
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p

q

r

q′ p

(b)(a)

Figure 1 (a) Recursively modifying the path π to make it rectilinear. Observe that the segment
pq cannot cross any obstacle edge. (b) Construction of the neighborhood for k = 1. p lies in the
neighborhoods of all polygons shown in dark gray.

Proof. We prove this in three steps. First we construct a path π′ from π∗ such that π′
consists of only straight line segments. Next we modify π′ to obtain a rectilinear path π⊥.
Then we claim that π⊥ is corresponding to a path π in G that uses at most k colors.

First, we remove all the k obstacles that are crossed by π∗ which makes π∗ lie entirely
in free space connecting s and t. Since s and t are now connected in free space, there must
exist a path of minimum Euclidean length that also lies in free space. Let this path be π′.
It is easy to see that edges of π′ are straight line segments, and lie in free space. Also π′
bends only at obstacle vertices. We now recursively modify each segment pq of π to obtain a
rectilinear path π⊥. Let r be the point where a horizontal line through p intersects a vertical
line through q. There are two cases. (See also Figure 1(a).)
1. If the triangle ∆pqr contains one or more obstacle vertices, we find the vertex q′ closest

to the segment pq, and replace pq with the segments pq′ and q′q. It is easy to verify that
π still lies in free space after this modification. We now repeat the process recursively on
the segments pq′ and q′q.

2. Otherwise, we simply replace pq by the rectilinear path πpq = pr → rq. Observe that
since the obstacles are rectilinear and the segment pq lies in free space, no obstacle
segment can intersect the triangle ∆pqr, and therefore πpq also lies in free space.

Observe that π⊥ obtained using the above procedure lies in free space and crosses the
boundaries of no more than k obstacles. Next, we retrieve an vs-vt path in G from this
rectilinear path π⊥. Note that, the way π⊥ is constructed, at least one of the two endpoints
of each of its segments is a vertex of a polygon and hence appears as a vertex in G. It follows
that, the subpath between two such consecutive vertices along π⊥ must consists of at most
two rectilinear segments: one horizontal segment followed by a vertical segment. Hence, this
subpath is the rectilinear embedding of the edge between the two vertices. We construct a
path π by selecting the vertices along π⊥ in order and connecting each consecutive pair of
vertices by an edge. By definition, π is in G and uses no more than k colors. J

Construction of the Neighborhood. Now we construct the neighborhood N (S) for all
obstacles S ∈ S that satisfies the bounded-size and bounded-occurrence properties. We
choose the ground set P of elements in the neighborhood to be the set of vertices V of the
obstacles in S. Now, we define the neighborhood N (S) of an obstacle S ∈ S to be the subset
of vertices from where one can reach a point on the boundary of S moving along a vertical
or a horizontal segment and crossing no more than k obstacles. Roughly speaking, N (S)
comprises of the vertices ‘nearby’ the boundary of S. We compute the set N (S) for every
S ∈ S as follows.
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For every vertex v ∈ V , draw four axis-aligned rays emanating at v one in each
of the four directions. Next, find the first k distinct obstacles whose boundaries are
intersected by each of these rays transversally as we move away from v. Let this set
be Xv and therefore |Xv| ≤ 4k. For each S ∈ Xv, include v to the neighborhood
N (S). (See also Figure 1.(b))

The elements in the union of all neighborhoods is the set of vertices in the input and
therefore has size O(n). Moreover, since each element is present in at most 4k neighborhoods,∑
S∈S |N (S)| is O(kn). Therefore the bounded-size property is easily satisfied. For the

bounded-occurrence property, we prove the following lemma.

I Lemma 11. Let π be any k-color vs-vt path in G and Si ∈ S be an arbitrary obstacle.
Then the color Ci corresponding to obstacle Si appears on edges of π at most O(|N (Si)|)
times.

Proof. We consider the set Ei = {e | Ci ∈ χ(e)} of edges that contain the color Ci and
need to show that |Ei| = O(|N (Si)|). Let e = (p, q) be an arbitrary edge in Ei and let
πpq = pr → rq be its rectilinear embedding. From our construction, e has color Ci iff
πpq crossed Si. Therefore, at least one of pr and rq must intersect the boundary of Si
transversally. This implies that at least one of p and q must be included in N (Si) during
our neighborhood construction. If p ∈ N (Si), we charge this occurrence of color Ci to p,
otherwise we charge it to q. Since a vertex p ∈ N (Si) is adjacent to at most two edges in π,
every element in N (Si) is charged at most twice. Therefore Ci occurs on edges of π at most
2|N (Si)| times. J

Using Lemma 9, we obtain the following result.

I Theorem 12. If all the obstacles in S are rectilinear polygons, then there exists an
O(
√
n)-approximation algorithm for the MCR problem.

3.2 An O(
√

n)-approximation for Arbitrary Disks
We will now consider the case when all the input obstacles are disks, of possibly different
radii. The construction of the neighborhood for disks needs to be different, as the earlier
arguments for rectilinear polygons relied heavily on obstacles having corners and therefore do
not apply to disks. Recall that in order to apply our approximation framework, we first need
to construct a valid colored graph G = (V,E, C) (Lemma 9). Towards this end, we simply
let G to be the graph GA induced by the input arrangement A: each cell of GA contains a
vertex and any pair of neighboring cells (vertices) are joined by an arc that does not intersect
any other cell. Let vs and vt be the vertices in G corresponding to the cells that contain s
and t, respectively. We assign a unique color to each disk. Additionally, we make G directed
by replacing each edge by two directed edges. For each directed edge e = (u, v), we assign to
e the set of colors corresponding to all the disks D such that v lies in the interior of D and u
does not lie in the interior of D. Roughly speaking, we assign colors when the edge enters
into an obstacle.

Note that the way G is defined, it is a plane graph and we consider its natural embedding
which is also planar. Since we assign colors when an edge of G enters an obstacle, it is easy
to see that a k-color path π in G corresponds to a k-crossing path π′ in the plane. For the
other direction, given a k-crossing path π′ we can easily construct a path π in G by simply
concatenating the vertices corresponding to each arrangement cell intersected by π′ in order.
Thus, we have the following immediate observation.
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lb

x1

(a)

Db

Ds

x2

(b)

Db
lb

Ds

x1

Figure 2 Disks shown in dash-dotted (shaded blue) are critical and included to D(Ds, Db). Disks
shown in dotted (shaded orange) are not critical with respect to the pair Ds, Db.

I Observation 13. G is a valid colored graph for the input disks.

As each color is corresponding to a disk and vice versa, we will use the term disk instead of
color in the context of applying the framework. In the following, we describe the neighborhood
construction. The key idea behind our construction is to pick a subset of the O(n2) possible
intersection points between pairs of disks in the input and use them for the ground set P of
the neighborhood.

Computation of the Set P and the Neighborhood N

Consider any two disks Ds, Db such that their boundaries intersect transversally. Without
loss of generality, assume that radius of Ds is smaller than Db and their boundaries intersect
at points x1, x2. Consider the arc x̄1x2 of ∂Db (boundary of Db) that lies inside Ds and
assume x1 lies before x2 in clockwise traversal of this arc. Let lb be the half line emanating
at x1 colinear to the tangent of Db at x1 and not intersecting Ds as shown in Figure 2. We
now define the set of critical disks D(Ds, Db) corresponding to a pair of intersecting disks
Ds and Db.

I Definition 14 (Critical Disks). Let D be a disk that intersects both Ds and Db. We say
that the disk D is critical with respect to the pair Ds, Db if D intersects the half line lb (see
Figure 2).

We include the tuple (x1, Ds, Db) to the set of neighborhood candidates P if and only if the
size of the critical set D(Ds, Db) corresponding to the intersecting pair Ds, Db is at most k.
We are now ready to define the neighborhood N (D) of a disk D.

For each disk D, add all the tuples of the form (x1, Ds, D) to the neighborhood
N (D). In addition, add a constant number of phantom points to the neighborhood
N (D) of all disks D.

In the next few lemmas we establish the bounded-size and bounded-occurrence property
of N . We will need the notion of exterior-disjointness. Given a disk D and two disks D1, D2
that intersect D, we say that D1 and D2 are exterior-disjoint w.r.t D if the regions D1 \D
and D2 \D are disjoint. A set D of disks is called exterior-disjoint w.r.t a disk D if any pair
of disks in D is exterior-disjoint of D. We note the following.

I Lemma 15. For a given disk Ds, let D be a set of disks such that the radius of any disk
in D is at least the radius of Ds. If D is exterior-disjoint w.r.t Ds, then |D| is at most six.
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Figure 3 An entry of πuv is charged to x1 ∈ N (Db).

Now we prove the bounded-size property of N . We note that, if there are no three disks
in the input whose boundaries intersect at a common point, then this proof follows readily
from the bound of O(kn) on the number of depth k points in an arrangement of disks [7, 16].
To see this, observe that for a tuple (x1, Ds, Db), that is added to P, the intersection point
of Ds and Db must lie inside at most k other disks. Otherwise, the set D(Ds, Db) contains
more than k disks which is a contradiction. Moreover, since no more than two disks intersect
at a point, each such intersection point adds at most two tuples. Thus the total size of all
neighborhoods is at most two times the number of vertices in the arrangement of the input
disks that lie inside at most k other input disks. From [7] and [16], it follows that the number
of such vertices is O(kn), and hence the bounded-size property follows. However, in presence
of degeneracy, we might add as many as k tuples corresponding to one intersection point, and
thus the bound does not follow immediately. Nevertheless, we prove the following lemma.

I Lemma 16. (∗) The number of elements in the the set P is O(kn).

Since each element of P is included in a unique neighborhood, the bounded-size property
of N follows from the above lemma. Next, we prove the bounded-occurrence property of N .
Observe that, it is sufficient to show the existence of a k-crossing s-t path π in the plane
that enters into (and therefore crosses) any disk D at most |N (D)| times. This is because,
an edge of G is assigned the color C corresponding to D only when it enters D, and thus
every occurrence of C on the path π is corresponding to a crossing of D by π. Also existence
of such a geometric k-crossing s-t path π implies the existence of a k-color vs-vt path in G
where each color corresponding to a disk D appears at most |N (D)| times.

Now consider any k-crossing path π in the plane. By a similar argument as in Lemma 10,
there also exists a k-crossing path π′ such that the edges of this path are either straight line
segments (tangents between a pair of disks) or parts of obstacle boundary (arcs). With this
convention, one can now easily define the length of any such path as the sum of the lengths
of its segments and arcs. Let π∗ be the minimum length s-t path that crosses k disks. Then,
we prove the following lemma.

I Lemma 17. π∗ crosses any disk Db at most O(|N (Db)|) times.

Proofsketch. It suffices to prove that every entry (and therefore crossing) of the disk Db by
π∗ can be charged to an element in N (Db) so that every element is charged at most O(1)
times. Let v1, v2, . . . , vl be the entry points on the disk Db by π∗. We charge the first entry
to a phantom point. Now consider the ith crossing for any i > 1. Let ui be the point on π∗
immediately before vi where π∗ last crossed Db. Thus the subpath πuivi

of π∗ between ui
and vi lies in the exterior of Db. Let Auivi

be the arc on the boundary of Db with endpoints
ui and vi such that the region Ruivi enclosed by the closed curve πuivi ∪ Auivi does not
contain Db.
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Consider the set of arcs {Auivi | 2 ≤ i ≤ l}. First, assume that any two arcs in this set
are disjoint. Since π∗ is a minimum length k-crossing path, there must be at least one disk
not crossed by π∗ that intersects Ruivi

as well as the disk Db. Let Ds be the first such disk
encountered while traversing the arc Auivi clockwise along the boundary of Db. There are
two cases. If Ds is bigger than Db, we charge the crossing to one of the phantom points in
N (Db). Otherwise, we assume Ds is smaller than Db. Let x1 be the first intersection point of
∂Ds and ∂Db encountered while traversing the arc Auivi

clockwise along the boundary of Db.
Observe that π∗ must cross all the disks in D(Ds, Db) because otherwise it will contradict
the choice of Ds.

Hence the size of D(Ds, Db) is bounded by k, the number of disks that π∗ can cross. This
implies the tuple (x1, Ds, Db) must be included to the neighborhood N (Db), and therefore
we can charge this crossing to this tuple.

Because of the disjointness assumption of the arcs, the same tuple cannot be charged to
another crossing.

Also it is easy to verify that the phantom points need not be charged more than a constant
number of times, as the set of disks bigger than Db for which we charge a phantom point
must be exterior-disjoint of Ds and therefore can be at most six (Lemma 15). The case when
the arcs are not disjoint, for any two arcs, one must contain the other. This is true, as the
subpaths πuivi as defined above cannot intersect each other. By exploiting this structure of
the arcs one can prove the lemma in this case as well. J

Using Lemma 9, we obtain the following result.

I Theorem 18. If all the obstacles in S are disks, then there exists an O(
√
n)-approximation

algorithm for the MCR problem.

Using a different realization of the algorithmic approach described above, it appears
possible to derive an approximation guarantee close to O(

√
n) for other obstacle types. We

sketch this for the case where the obstacle set S is a set of triangles satisfying standard
degeneracy assumptions. We define the level of a 2-dimensional cell σ in the arrangement
of the triangles in S to be the minimum number of triangles whose removal results in an
obstacle-free path from s to (any point in) σ. Thus, there is only one cell at level 0, and
this is the cell containing s. We can show that the number of cells with level at most k
is O(knα(n)), where α(·) is the inverse Ackermann function. Furthermore, the number of
arrangement edges bordering such cells is also O(knα(n)).

Suppose there is a k-crossing path from s to t, and we want to approximate it. For a
triangle T ∈ S, we include in its neighborhood N (T ) any arrangement edge e such that
(a) e is part of T ’s boundary, and (b) e borders a cell σ that is contained in T and has
level at most k. It follows that the sum of the neighborhood sizes is O(knα(n)). We can
also establish the bounded occurrence property, leading to an approximation guarantee of
O(

√
nα(n)). We defer the details to the journal version.

4 Hardness of Approximation

In this section, we describe the 2-inapproximability and the APX-hardness results for
rectilinear polygons and axis-parallel rectangles, respectively. Due to space constraints, we
will just mention the results and defer the details to the appendix.
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2-inapproximability. We reduce an instance of Vertex Cover to an instance of MCR with
rectilinear polygons. Since Vertex Cover is hard to approximate within a factor of 2 assuming
the Unique Games conjecture [18], we get the following theorem.

I Theorem 19. Minimum constraint removal with rectilinear polygons is hard to approximate
within a factor of 2 assuming the Unique Games conjecture.

The same construction can also be extended for convex polygons.

I Corollary 20. Minimum constraint removal with convex polygons is hard to approximate
within a factor of 2 assuming the Unique Games conjecture.

APX-hardness for Axis Parallel Rectangles. We reduce a restricted version of vertex cover
to our problem which is referred to as Special-3VC. Chan et al. [6] had introduced this
version for the sake of proving APX-hardness of several geometric optimization problems.
As Special-3VC is APX-hard we obtain the following theorem.

I Theorem 21. Minimum constraint removal with rectangles is APX-hard.
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A Proof of Lemma 16

To prove this lemma, we fix a small disk Ds and try to bound the number of bigger disks
Db intersected by Ds such that the tuple (x1, Ds, Db) was included in P. To this end, we
consider the following iterative procedure of adding tuples to P for a given Ds.

We process a set of event points E along the boundary of Ds in clockwise order. The event
points are of the form ei = 〈xi1, Ds, Di〉 such that radius of Di is at least the radius of Ds

and Di intersects Ds transversally at points xi1, xi2 as defined before. (See also Figure 2(a).)
Starting at any arbitrary point on the boundary of Ds, we sort events in E by its intersection
point xi1 in clockwise order. If two events ei, ej ∈ E have the same intersection point
xi1 = xj1 = x1, we order them by their angular separation from Ds at point x1.

For any pair of intersecting disks Ds, Db we define the angular separation at a point of
intersection x1 as follows. Consider the half line tangent lb to disk Db at x1 such that lb does
not intersect Ds. Similarly, consider the half line tangent l′s to disk Ds at x1 but such that
l′s intersects Db. The angle φ between lb and l′s is called the angular separation of Db from
Ds at the point x1. (See also Figure 4).

Initially all disks Di such that ei = 〈xi1, Ds, Di〉 is an event point in E are unmarked. Now,
we simply process the events in E in the aforementioned order and mark the corresponding
disks Di as either processed or ignored or discarded. At iteration i, we consider the event
point ei and process the corresponding (unmarked) disk Di. Now we consider the critical set
D(Ds, Di) as we defined before. If |D(Ds, Di)| is at most k, we mark Di as processed and
all the unmarked disks in D(Ds, Di) as ignored. Otherwise, we mark Di as discarded and
proceed to the next event point. For example, in Figure 5, we start at point x1

1 and proceed
in clockwise order. D1 appears before D2 in E because the angular separation with Ds is
smaller for D1. The disks marked as processed are shown with thick boundary and shaded
gray. The disks that are marked ignored are shown in dotted and shaded orange.
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Figure 5 Processing disks Di.

Observe that during each iteration we mark at most one disk as processed and at most
k disks as ignored. Since we do not add tuples for disks that are discarded, we could have
added at most k + 1 tuples to P in each iteration. Next, we will show that the process
terminates after a constant number of iterations. To see this, observe that the disk Di that is
marked as processed during iteration i must be exterior-disjoint w.r.t Ds from the disk Di−1
marked processed at the previous iteration. Thus among all these processed disks only the
last disk can intersect the first one in the exterior of Ds. All other disks are exterior-disjoint
of Ds from these two disks and themselves. Since all these disks are bigger than Ds, from
Lemma 15 it follows that, we can have at most seven such disks around Ds. Therefore, the
process must terminate after at most seven iterations and the number of tuples added to P
corresponding to Ds is at most 7k + 7. Since there are O(n) choices for Ds, we have in total
O(kn) candidates added to P. J

B 2-Inapproximability for Rectilinear Polygons

We reduce an instance of Vertex Cover to an instance of MCR with rectilinear polygons.
Recall that in the Vertex Cover problem we are given an n vertex graph G = (V,E), and the
goal is to find a minimum size subset V ′ ⊆ V such that for any (u, v) ∈ E, either u or v is in
V ′. Let e1, . . . , em be the edges of G. Next, we describe the reduction. The reduced instance
of MCR contains a region called barrier formed by a subset of the obstacles. Each point
in the barrier is contained in more than n obstacles and thus if an s-t path intersects the
barrier, it intersects more than n obstacles. We would ensure that any optimal path of the
instance intersects at most n obstacles and thus no such path intersects the barrier region.
Intuitively, the barrier region forces any optimal path to lie in a certain region, which we
refer to as corridor.

The construction is the following. We place an obstacle corresponding to each vertex. For
each edge (u, v) there is two possible pathlets (or subpaths of an s-t path) - one that intersects
the obstacle corresponding to u and the other that intersects the obstacle corresponding to
v. The start (resp. end) points of the two pathlets corresponding to an edge are the same.
Also one of the two pathlets corresponding to an edge lies above x-axis and the other lies
below x-axis. To ensure this all the start and the end points of the pathlets are placed on
the x-axis. Let si and ti be the respective start and end points of the pathlets corresponding
to the edge ei. These points are placed on x-axis in the order s1, t1, s2, t2, . . . , sm, tm. For
each 1 ≤ i < m, we connect the point ti with si+1 using a segment that joins the ith and
i+ 1th pathlets. The point s is placed on x-axis before s1 and t is placed on x-axis after tm.
s and s1 are connected by a segment. Similarly, tm and t are connected by a segment. Now
to ensure that the pathlets cross the correct obstacles, they are laid out as shown in Figure 6.
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Figure 6 An example of the construction. The barrier region is shown in gray.

Each pathlet contains exactly one point (tip) having the maximum x-coordinate. Moreover,
all such tips corresponding to the pathlets are in convex position. Thus one can connect the
tips of any subset of pathlets using segments to form a rectilinear polygon that does not
intersect any other pathlets (see Figure 6). Recall that each pathlet of an edge corresponds
to a vertex. For each vertex u ∈ V , we connect the tips of the pathlets corresponding to u
to form a rectilinear polygon shaped obstacle. Note that the total number of possible s-t
paths we constructed is 2m. Now to make sure that any optimal s-t path is one of these 2m
paths, we surround these paths with a barrier. Any optimal path must always stay inside
the corridor, as it is expensive to cross the “wall” of the barrier. As the pathlets consist of
a polynomial number of segments in total, a polynomial number of rectilinear polygons is
sufficient to place avoiding the 2m s-t paths. We make O(n) copies of each such polygon to
ensure the density. Lastly, each obstacle corresponding to a vertex is expanded sufficiently
to ensure that it blocks the respective portion of the corridor. Note that the barrier can be
placed in a way so that the corridor is arbitrarily thin, and thus this expansion can be done
such that the obstacles do not cross any additional pathlets.

I Lemma 22. There is a size k vertex cover for G iff there is an s-t path that intersects k
obstacles.

Proof. Given a cover V ′ ⊆ V of size k for G, we simply remove the obstacles corresponding
to vertices in G. Since V ′ covers all the edges of G, it must unblock at least one of the two
pathlets corresponding to each edge (u, v) giving an obstacle-free path from s to t. Similarly
given an s–t path π that intersects k obstacles, we can construct a cover for G by simply
including the vertices corresponding to obstacles intersected by π. J

As Vertex Cover is hard to approximate within a factor of 2 assuming the Unique Games
eonjecture [18], it follows that MCR with rectilinear polygons is hard to approximate within
a factor of 2 (Theorem 19). It is easy to see that the same idea can easily be extended for
convex polygons. Basically, one can connect the tips of any subset of pathlets using segments
to form a convex polygon that does not intersect any other pathlets. This gives us the same
hardness bound of 2 even for convex polygons (Corollary 20).
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Figure 7 (a)The stack of the class 1 rectangles for m = 2. (b) The initial configuration of the
class 2 rectangles (shown by squares) for m = 2. (c)Drawing of the pathlets for the class 1 edges.

C APX-hardness for Axis Parallel Rectangles

We reduce a restricted version of vertex cover to our problem which is referred to as Special-
3VC. Chan et al. [6] had introduced this version for the sake of proving APX-hardness of
several geometric optimization problems.

I Definition 23. In a Special-3VC instance, we are given a graph G = (V,E), where V
contains 5m vertices {vij | 1 ≤ i ≤ m, 1 ≤ j ≤ 5}. E contains 4m+n edges - 4m of type 1 and
n of type 2, where 2n = 3m. Type 1 edges are of the form {(vij , vi,j+1) | 1 ≤ i ≤ m, 1 ≤ j ≤ 4}.
Type 2 edges are of the form {(vpq, vxy) | 1 ≤ p < x ≤ m, and q, y are odd numbers} such
that any vertex vij with odd index j appears in exactly one such edge.

As each vertex vij with odd index j contributes exactly once in the type 2 edges, the
number of type 2 edges is 3m/2 = n. Chan et al. [6] proved that Special-3VC is APX-hard.
Now we describe our reduction. The reduction is similar to the reduction for rectilinear
polygons. We will have one obstacle corresponding to each vertex. Moreover, we construct
two pathlets corresponding to each edge (u, v) such that one pathlet intersects the obstacle
corresponding to u and the other intersects the obstacle corresponding to v. However, due to
the simpler structure of the obstacles, here it is more complicated to show that the pathlets
intersect the correct obstacles. The construction of the instance of MCR is as follows.

We denote the rectangles corresponding to vij by Rij . First we place the rectangles
corresponding to the vertices in {vij | 1 ≤ i ≤ m and j is even} in a way so that they form a
stack like structure (see Figure 7(a)). Also the rectangles are placed from top to bottom in
the lexicographic order of the indexes (i, j): Rab is considered before Rcd if a < c, and Ra2 is
considered before Ra4. We refer to these rectangles as the class 1 rectangles. Thereafter we
place the rectangles corresponding to the remaining vertices. All these rectangles are placed
in the increasing order of the sum of the indexes i+ j. The first one is placed below Rm4
(the last rectangle of the stack) in a way so that its left side is aligned with the left side of
Rm4. Thereafter every rectangle is placed below the already placed ones and a little aligned
towards the left w.r.t. the previous one (see Figure 7(b)). We refer to these rectangles as the
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Figure 8 (a) Drawing of the pathlets for the edge (vpq, vm5) where m = 2, p = 1, q = 5. (b)
Drawing of the pathlets for the type 2 edges (v15, v25), (v11, v23), (v13, v21) where m = 2.

class 2 rectangles. We note that initially every class 2 rectangle is a square. Later each such
rectangle might be expanded suitably towards right and below to ensure the correctness of
the intersections with the pathlets.

Now let L be a vertical line such that all the rectangles are placed strictly to the right of
it. All the endpoints of the pathlets we draw lie on L. Each pathlet is a curve consisting
of rectilinear segments. The start (resp. end) points of the two pathlets corresponding to
an edge are the same. We place s right above the topmost start point of the pathlets and
connect s with this point by a vertical segment. Similarly, the point t is placed below the
bottommost end point and joined with it by a vertical segment. At first we draw the pathlets
for type 1 edges {(vij , vi,j+1) | 1 ≤ i ≤ m, 1 ≤ j ≤ 4} in the dictionary order of the indexes
(i, j, i, j+ 1), i.e at first (v11, v12), then (v12, v13) and so on. The pairs of start and end points
of the pathlets corresponding to these edges appear in the same order on L from top to
bottom. For each type 1 edge (vij , vi,j+1), let s(i, j, j + 1) and t(i, j, j + 1) be the respective
start and end points of the pathlets. j is 3. Otherwise, it appears only once. Let Pij be the
horizontal projection (an interval) of Rij on L. Then the start and endpoints of the pathlets
of the type 1 edges with a vertex vij lie on Pij . Now consider a type 1 edge (vij , vi,j+1).
Then either j or j + 1 is odd. WLOG let j is odd. We draw the two points s(i, j, j + 1) and
t(i, j, j + 1) on Pij such that s(i, j, j + 1) lies above t(i, j, j + 1). One pathlet of (vij , vi,j+1)
lies on the right of L. It consists of three orthogonal segments and the only rectangle it
intersects is Rij (see Figure 7(c)). The other pathlet is also drawn in a way so that the only
rectangle it intersects is Ri,j+1 (see Figure 7(c)). We repeat the process for all type 1 edges
and each consecutive pairs of end and start points are joined with a vertical segment.

Now we draw the pathlets corresponding to the type 2 edges {(vpq, vxy) | 1 ≤ p < x ≤ m,
and q, y are odd numbers}. Note that, there are n such edges in G. We process all these
edges in the reverse lexicographic order of the indexes (x, y) of the vertices vxy. Thus at first
we consider the edge that contains vm5, then the edge that contains vm3 (if not considered
already), then the edge that contains vm−1,5 (if not considered already), and so on. We take
n+ 1 vertical lines G1, . . . , Gn+1 such that Gn+1 intersects the right vertical side of R11, Gn
is on the right of Gn+1, Gn−1 is on the right of Gn, and in general Gi is on the right of Gi+1.
Also let Gi and Gi+1 are unit distance apart for 1 ≤ i ≤ n. In every iteration 1 ≤ i ≤ n,
we define a horizontal line Hi. Denote the region by Qi, that lie below Hi and inside the
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strip defined by Gi and Gi+1. The drawing procedure is the following. Consider the first
edge (vpq, vm5) corresponding to the vertex vm5. Let H1 be a horizontal line such that all
the class 1 rectangles lie above it and all the class 2 rectangles lie below it. At first we
expand Rm5 sufficiently towards below such that one can place a pathlet with the following
properties - the only rectangle it intersects is Rm5, it consists of two horizontal segments
and one vertical segment, and its start and end points lie on L. Note that the expansion
of Rm5 do not create any new intersections with the existing pathlets. Thereafter Rpq is
expanded sufficiently towards below and right to ensure that it has non-empty intersection
with Q1. Then the other pathlet can be drawn in a way so that it intersects the portion of
Rpq that is in Q1, and as Q1 is empty the pathlet does not intersect any other rectangle (see
Figure 8(a)). Now consider the ith type 2 edge (vpq, vxy) in this order. Let all the edges
before it in the ordering are already taken care of. It is easy to see that one can expand Rxy
towards below for drawing a pathlet with the desired properties. Now to make sure that the
other pathlet intersects only Rpq, set Hi to be a horizontal line such that the region Qi, as
defined above, is empty of previously drawn pathlets and expanded rectangles. Then we can
expand Rpq towards below and right so that it has non-empty intersection with Qi. As Qi is
empty one can draw the other pathlet as well with the desired properties (see Figure 8(b)).

Finally, we place the barrier region around the paths. As the pathlets are orthogonal
and consisting of a polynomial number of segments in total, the barrier region can be
simulated using a polynomial number of rectangles and thus the construction can be realized
in polynomial time.

From the construction, it is straightforward to see the following lemma.

I Lemma 24. There is a size k vertex cover for G iff there is an s-t path that intersects k
rectangles.

As Special-3VC is APX-hard, it follows that MCR with axis-aligned rectangles is
APX-hard (Theorem 21).
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