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Abstract

Let A(S) be the arrangement formed by a set of n
line segments S in the plane. A subset of arrangement
vertices p1, p2, . . . , pk is called a convex k-gon of A(S)
if (p1, p2, . . . , pk) forms a convex polygon and each of
its sides, namely, (pi, pi+1) is part of an input segment.
We want to count the number of distinct convex k-gons
in the arrangement A(S), of which there can be Θ(nk)
in the worst-case. We present an O(n log n+mn) time
algorithm, for any fixed constant k, where m is the
number of pairwise segment intersections. We can also
report all the convex k-gons in time O(n log n+mn+|K|),
where K is the output set. We also prove that the k-gon
counting problem is 3SUM-hard for k = 3 and k = 4.

1 Introduction

We consider the problem of counting, and enumerating,
all convex k-gons formed by the arrangement A(S) of a
set S of n line segments in the plane. A set of vertices
p1, p2, . . . , pk of the arrangement A(S) is called a convex
k-gon if (p1, p2, . . . , pk) forms a convex polygon and
each of its sides (p1, p2), (p2, p3), . . . , (pk−1, pk), (pk, p1)
is part of an input segment. We note that such a k-gon is
not necessarily a face of the arrangement, and in general
there can be Θ(nk) convex k-gons, for any fixed k. We
are interested in the problem of counting these k-gons.
That is, given a set of n line segments in the plane, how
many convex k-gons exist in their arrangement?

Surprisingly, this natural-sounding problem appears
not to have been explored in computational geometry.
We are motivated by an application in computer vision
where the case of counting, and enumerating, convex
quadrilaterals arises. Specifically, the arrangement is the
camera image representing linear boundaries of objects
in the scene, and the goal is to estimate (the counting
problem) the number of “rectangular” objects in the
input scene, which may represent important features
such as desks, door frames, walls etc. Due to the per-
spective transformation, the rectangles in the scene map
to convex quadrilaterals in the image.

The computational problem then becomes the fol-
lowing: can we find all convex quadrilaterals in the
n-segment arrangement in better than the naive O(n4)
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time? Counting convex k-gons is a natural generaliza-
tion of this problem. We call this the k-gon reporting
problem, which leads to a natural counting version of
the problem, where we are just interested in counting
the number of k-gons formed by the segments. Un-
like the segment intersection problem [2, 3], in which
the maximum number of intersecting line segments is
O(n2), the number of combinatorially distinct k-gons
in an n-segment arrangement can be Ω(nk). See Fig. 1.
Therefore, it is desirable to be able to count the k-gons
in time much faster than the number of combinatorially
distinct k-gons.

Figure 1: An arrangement of n segments with Ω(nk)
convex k-gons. Each of the k = 5 groups contains bnk c
segments.

Our Contribution. We present a sweep-line algorithm
for counting the number of k-gons in worst-case time
O(n log n+mn), using O(n2) space, for any constant k,
where m is the number of pairwise segment intersections.
The algorithm works for non-constant values of k as well,
but in that case takes O(n log n+mn2) time and O(n3)
space. In either case, the running time is independent
of k.

By maintaining additional information during the
counting algorithm, we can also recover all the k-gons,
in worst-case time O(n log n + mn + |K|) time, using
O(mn+ n2) space, where K is the output.

Finally, we show that counting the number of triangles
and the number of quadrilaterals are both 3SUM-hard,
suggesting that a running time significantly better than
O(n2) is unlikely.
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Related Work. The problem of counting convex k-gons
in a set of n points has been considered by several re-
searchers [9, 8, 7]. The algorithm in [9] achieves a running
time of O(nk−2), which was then improved to O(ndk/2e)
in [8]. This bound was improved significantly to O(n3)
by Mitchell et al. [7] using dynamic programming. In
[4], Eppstein et al. study the related problem of finding
minimum area k-gons for point sets.

Some results are also known for the restricted problem
of counting faces in line arrangements. For instance,
every arrangement of lines (or pseudolines) in the plane
results in Ω(n) triangular faces [5].

Another related problem is one of counting and report-
ing simple cycles of given length in a graph. In general,
the time bound for counting the cycles is exponential in
k [1], however for k ≤ 7 the problem can be solved in
O(n2.376) time. These cycle counting results in graphs,
however, do not solve our k-gon problem because of the
convexity constraint. Indeed, an arrangement A(S) of
segments can be easily viewed as a graph, whose vertices
are the segments and whose edges correspond to pairs
of intersecting segments. However, cycles in this graph
are not necessarily convex polygons. An exception is the
case of triangles which are always convex: every 3-cycle
correspond to a triangle in the segment arrangement,
but only for non-degenerate input, namely, no three
segments intersecting in a common point.

2 Counting Convex k-gons

Let P be a convex k-gon in the arrangementA(S) formed
by the n line segments of S.1 Let L be a vertical line
intersecting P . Since P is convex, L can only intersect
two sides of P . The span of P with respect to L is
the (ordered) pair of segments of P that intersect L.
Although the number of k-gons can be exponential in k,
the number of distinct spans is only quadratic.

Observation 1 There are O(n2) distinct spans among
all k-gons of A(S) with respect to a vertical line L.

In other words, Observation 1 tells us that although
there could be Ω(nk) k-gons, at a given vertical line
L, all k-gons intersecting L can be assigned to one of
the O(n2) distinct segment pairs. This suggests the
existence of a natural sweep line based approach for
the counting problem. The key idea is to keep track of
convex open polygons with up to k sides as we sweep a
vertical line L across the arrangement. When sweeping
over an intersection, some open polygons may become
closed k-gons, which we must count, while other open
polygons can be extended using the intersection vertex,
and new open polygons start growing at the intersection.
We start by fixing some notation.

1For the rest of the paper, we drop the qualifier “convex” and
simply refer to P as a k-gon.
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Figure 2: Open 5-gons: Σ(a, b, 5) at a given sweep line
L; two members of the set are shown by dotted lines.

Notation. Observe that when we are sweeping a verti-
cal line L across the arrangement, at a given x-coordinate
xL, we may have come across two types of potential k-
gons:

• Closed k-gons: these are the k-gons all of whose
sides are to the left of the line L.

• Open j-gons: these are j-gons, for j ≤ k, whose j
sides lie (partially or fully) to the left of L. More
precisely, L intersects the two open sides of these
convex polygons and their remaining j − 2 sides are
to the left of L. See Fig. 2.

Observe that open j-gons are only potential candidates
for closed k-gons; not all of them necessarily become
k-gons.

At an x-coordinate xL, we can now represent an open
j-gon P by the triplet (a, b, j), where a and b are the
segments forming the top and bottom sides of P at xL
and j is the number of sides we have seen so far. Note
that 2 ≤ j ≤ k and this includes the sides of P formed
by the segments a and b. The triplet (a, b, j) succinctly
combines all open j-gons for which a and b are the open
sides intersecting the line L; we let Σ(a, b, j) denote
the set of these open j-gons, and we let σ(a, b, j) =
|Σ(a, b, j)|.

2.1 Algorithm

Our algorithm moves a sweep line L across the arrange-
ment A(S) with the segment intersections as key event
points. For the sake of simplicity, we assume no degenera-
cies for now, that is, every intersection involves exactly
two line segments of S. (We will show how to handle
degenerate cases later in this section.) We maintain an
array of counters σ(a, b, j) which keep track of all open
j-gons whose span is (a, b) on line L, for all 2 ≤ j ≤ k.
A global counter keeps track of all the closed k-gons
that have been encountered already. In the following,
we explain these steps in detail.
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Figure 3: After the intersection of a and b, the sweep
line L gets new open polygons for Σ(b, a, 2), Σ(c, b, j+1),
and Σ(a, d, j+ 1) shown in dash dotted; parent polygons
in Σ(c, a, j) and Σ(b, d, j) are still active.

1. Set count = 0 and σ(a, b, j) = 0 for all segments
a, b and 2 ≤ j ≤ k.

2. Compute all m intersections of the n line segments
using [2] and order them from left to right.

3. Process the intersections one by one from left to
right, moving the sweep line L accordingly.

When L contains the intersection of segments a and
b (where to the left of L, a is above b), we perform
the following updates. See Fig. 3.

(a) Open k-gons of Σ(a, b, k) become closed k-gons.
We update the count:

count += σ(a, b, k)

(b) An open 2-gon of b and a begins at this inter-
section. We initialize the count:

σ(b, a, 2) = 1

(c) For all 2 ≤ j < k, each open j-gon with a
as the lower side can be extended to an open
j + 1-gon with b as the lower side. Let S′L be
the set of segments intersecting sweep line L
above the intersection point (a, b). We update
the count:

∀c ∈ S′L σ(c, b, j + 1) += σ(c, a, j)

Similarly, for each 2 ≤ j < k, each open j-gon
with b as the upper side can be extended to an
open j + 1-gon with a as the upper side. Let
S′′L be the set of segments that intersect sweep
line L below the intersection point (a, b).

∀d ∈ S′′L σ(a, d, j + 1) += σ(b, d, j)

4. Return count .

Correctness. Let SL be the set of all segments that
intersect the sweep line L. Let AL be the set of all
possible spans for the k-gons intersecting L. That is,
AL = {(a, b) | a, b ∈ SL, a above b on L}. As the sweep
line moves from left to right we maintain the following
invariant:

count is the total number of closed k-gons
to the left of L; and σ(a, b, j) is the number
of open j-gons with span (a, b) on L, for all
(a, b) ∈ AL and 2 ≤ j ≤ k.

The invariant is trivially satisfied before processing
the first intersection. For the general case, after moving
the sweep line L over the intersection (a, b), the segments
a and b switch their vertical order. Therefore,

1. AL no longer includes the span (a, b).

2. count now includes the new k-gons that complete
at the intersection (Step 3a); these correspond to
the open k-gons counted by σ(a, b, k).

3. AL includes the new span (b, a). Right after the
crossing, the open 2-gon formed by b and a is the
only polygon with that span, covered by σ(b, a, 2) =
1.

4. Open polygons with span (c, b) ∈ AL can now also
use the vertex (a, b). Any such open j-gon (j ≤ k)
must consist of the new intersection and an open j−
1-gon with span (c, a) right before the intersection
(compare Step 3c).

5. Analogously, open polygons with span (a, d) ∈ AL

can now use vertex (a, b). Such a new open j-gon
(j ≤ k) consists of the new intersection and an open
j − 1-gon with span (b, d).

It is easy to see that the algorithm maintains the
invariant after processing each intersection. Hence, when
eventually the sweep line L is right of all intersections,
count is the total number of k-gons.

Analysis. Computing and storing all m intersections
takes O((n+m) log n) time and O(m+n) space [2]. Since
we perform O(n) updates for each of the m events, the
total running time for our algorithm is O(n log n+mn).
The total space requirement is O(n2) since we store
information for all pairs of segments that may intersect
the sweep line.

Handling Degenerate Cases. We now show how to
extend our algorithm so that it can also handle segment
arrangement with degeneracies, that is, with three or
more segments intersecting in a single point. (For parallel
segments, we do not need to do anything special). For
an intersection point pi of a set Si of more than two
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segments, we first update the number of closed k-gons
for every pair of segments in Si. For extending open
j-gons (2 ≤ j < k), we need to be a bit more careful.
Since we do not want degenerate k-gons, we should only
extend the j-gons which we have seen before the current
intersection. More precisely, we compute the updates for
every pair of segments in Si, and apply them collectively.
One way to achieve this is to process the updates in Step
3(b) and 3(c) in decreasing order of j as follows:

• For j in k − 1 down to 3 perform updates in Step
3(c) for every segment pair in Si.

• Perform updates in Step 3(b) for every segment pair
in Si.

Observe that these modifications do not affect the over-
all runtime since m ∈ O(n2) is the number of pairwise
intersections.

3 Reporting Convex k-gons

We now turn to the problem of reporting all the k-gons
in an arrangement of n line segments. We solve this
problem by extending our algorithm for counting k-gons.
The key idea is to keep track of how the values σ(a, b, j)
are updated as we move the sweep line across the ar-
rangement, and to remember the values that contributed
to the total number. Recall that the total number of
k-gons formed by n segments can be Ω(nk). Therefore,
we would like the total running time to be linear in size
of the output. We start by describing a reporting graph
that will help us reconstruct all k-gons.

Reporting Graph. Our reporting graph is a labeled di-
rected acyclic graph G = (V,E,L). Its vertices represent
the sets of polygons Σ(a, b, j) and its edges keep track of
how these sets grow. The function L : E → N assigns a
label L(e) to each edge e ∈ E. The label is a timestamp
and represents the intersection at which the edge was
created.

To construct the digraph G, we extend the counting
algorithm from Section 2.1 as follows:

1. For every pair (a, b) of segments and 2 ≤ j ≤ k add
a vertex (a, b, j) to G.

2. Define Q = ∅ to be the set that keeps track of closed
k-gons grouped by their rightmost vertex.

3. Refer to step 3 of the counting algorithm. Suppose
the sweep line L is currently at the ith intersection
event (a, b). Recall that S′L and S′′L are respectively
the sets of segments that intersect L above and
below the intersection point (a, b). We modify the
reporting graph as follows; see Fig. 4 for an example.

(a) If σ(a, b, k) > 0, insert (a, b, k) to Q.

(b) For all values 2 ≤ j < k and each segment
c ∈ S′L with σ(c, a, j) > 0, create an edge(
(c, b, j + 1), (c, a, j)

)
.

(c) Similarly, for all 2 ≤ j < k and a segment
d ∈ S′′L with σ(b, d, j) > 0, create an edge(
(a, d, j + 1), (b, d, j)

)
.

Label each edge e created for this intersection event
with the timestamp L(e) = i.

The reporting graph G has the following properties.

• G hasO(n2) vertices andO(mn) edges. The vertices
of the form (a, b, k) have in-degree zero (sources)
and vertices of the form (a, b, 2) have out-degree
zero (sinks).

• An edge of G represent the extension of an open
j-gon into a j + 1-gon (2 ≤ j < k), with the inter-
section point (a, b) being the newly added corner.
As a result, we get two new sets of j + 1-gons: one
with b as the lower side and another with a as the
upper side.

• There is exactly one label on every edge since two
segments can only intersect once.

• Each complete k-gon corresponds to a path that
starts at a vertex in Q (a source in G) and ends
at a sink of G. Since G is acyclic, every such path
has exactly k − 2 edges. The intersection points
corresponding to these k − 2 edges along with the
two intersection points for the source and sink will
be the k vertices of the output k-gon.

Enumerating all k-gons. With the reporting graph G,
enumerating all k-gons seems pretty straightforward. We
can simply start at vertices in Q one by one and recur-
sively explore all distinct paths to sinks. However, there
is one small caveat. Since the segments may continue to
grow further after we close a k-gon, it is possible that
a vertex v of G gets an additional successor w′ after it
got a predecessor u; see Fig. 4. Observe that in such a
case, the path (u→ v → w′ → · · · ) does not correspond
to a valid k-gon since the corresponding vertices are not
ordered chronologically.

In order to fix this we can use the timestamps of the
edges: we only recurse using the edges whose timestamp
is smaller than that of the parent edge. Because of our
construction, we are guaranteed to find at least one such
edge. Moreover, since the edges are added in the order
of their timestamps, we can stop at the first edge for
which the timestamp is higher than the parent value.
This way we spend no extra time on objects that are
not a member of our output set. Consequently, we get a
running time of O(n log n+mn) for constructing the G,
and O(|K|) time for reporting the k-gons that form our
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(a) Arrangement of five line segments. Numbers 1
through 7 indicate intersections from left to right
events. The two valid 4-gons formed by the segments
are shown by red and blue dotted lines.

(c, a, 2) (d, a, 2)

(b, a, 3)

(e, a, 4) (b, d, 4)

2 7

4 3

(b) Reporting graph. The edge shown as dash-dotted was added after
its predecessors and therefore does not contribute to a valid 4-gon. The
other two valid dotted paths to the sink (c, a, 2) represent the closed
4-gons with vertices (1, 2, 4, 6) and (1, 2, 3, 7).

Figure 4: An arrangement and the corresponding reporting graph.

output set K. Since G has O(n2) vertices and O(mn)
edges, the total space requirement is O(n2 +mn).

4 3SUM-Hardness

In this section, we show that counting the number of
triangles in an arrangement of straight-line segments is
at least as hard as the 3SUM problem. Since it is widely
believed that 3SUM cannot be solved in o(n2) time, this
also holds for the problem of counting triangles.

Theorem 1 Counting the number of triangles in an
arrangement of straight-line segments is 3SUM-hard.

Proof. We reduce the problem Point-on-3-Lines to
counting triangles. Gajentaan and Overmars showed
that Point-on-3-Lines is as hard as 3SUM [6]. In
Point-on-3-Lines one has to decide whether a given
arrangement of straight-lines contains a point in which
at least three lines intersect. It is easy to see that the
problem remains 3SUM-hard even if no pair of lines is
parallel. We transform such an arrangement of lines
(with no parallel pairs) to an arrangement of straight-
line segments by shortening all lines to segments. We
must ensure that all crossings of lines are preserved as
crossings of the corresponding segments. To this end,
we determine the bounding box of the line arrangement,
which is not hard to achieve in O(n log n) time.

Consider the resulting arrangement. Since it contains
all crossings, each triple of segments forms a triangle
unless either the three segments intersect in a single
point, or (ii) two of the segments are parallel—which
cannot happen since the input lines did not contain
parallel pairs. Therefore, the arrangement of segments
contains

(
n
3

)
triangles if and only if there is no point in

which three or more lines intersect.

We have seen that we can check the existence of a point
lying on at least three lines by counting the triangles in
the arrangement of segments. Furthermore, transform-
ing the instance and determining the number α needed
only constant time. Hence, an o(n2)-time algorithm for
counting triangles in segment arrangements implies an
o(n2)-time algorithm for Point-on-3-Lines. �

We can use almost the same 3SUM-hardness proof for
convex quadrilaterals rather than triangles. Observe that
any arrangement of four straight-lines (without parallel
pairs) forms exactly one quadrilateral face unless three
of the lines meet in a point. Hence, the number of
quadrilaterals is

(
n
4

)
if and only if there is no triple of

lines meeting in a point.

Theorem 2 Counting the number of convex quadrilater-
als in an arrangement of straight-line segments is 3SUM-
hard.

Unfortunately, for larger values of k, e.g., k = 5 the
hardness reduction does not seem easy to adjust. The
problem is that not every set of five straight lines forms
a 5-gon, even if they are in general position.

5 Conclusion

We introduced the problem of counting and reporting k-
gons in an arrangement of line segments, and presented
an O(n log n+mn) time algorithm for counting all the k-
gons, for any fixed constant k, where m is the number of
intersecting segment pairs. Our algorithm for reporting
all the k-gons runs in time O(n log n+mn+ |K|), where
K is the output set. We also prove that the k-gon
counting problem is 3SUM-hard for k = 3 and k = 4.
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