Counting Convex k-gons in an Arrangement of Line Segments

Martin Fink, Neeraj Kumar and Subhash Suri

University of California, Santa Barbara
Consider the following problem from computer vision:
Consider the following problem from computer vision:

Given a camera image I representing object boundaries, estimate the number of rectangular objects in the scene.
Motivation

Consider the following problem from computer vision:

Given a camera image I representing object boundaries, estimate the number of \textit{rectangular} objects in the scene.

- Camera image $I \Rightarrow$ Arrangement \mathcal{A} of line segments
Consider the following problem from computer vision:

Given a camera image I representing object boundaries, estimate the number of rectangular objects in the scene.

- Camera image $I \Rightarrow$ Arrangement \mathcal{A} of line segments
- Perspective transformation:
 Rectangles in scene \Rightarrow quadilaterals in image
Motivation

Consider the following problem from computer vision:

Given a camera image I representing object boundaries, estimate the number of rectangular objects in the scene.

- Camera image I \Rightarrow Arrangement \mathcal{A} of line segments
- Perspective transformation:
 Rectangles in scene \Rightarrow quadilaterals in image
- Count all convex quadilaterals (4-gon) in an arrangement
Consider the following problem from computer vision:

Given a camera image I representing object boundaries, estimate the number of rectangular objects in the scene.

- Camera image $I \Rightarrow$ Arrangement \mathcal{A} of line segments
- Perspective transformation:
 - Rectangles in scene \Rightarrow quadilaterals in image
- Count all convex quadilaterals (4-gon) in an arrangement

Natural generalization to convex k-gons
Given: An arrangement $\mathcal{A}(S)$ of line segments S in 2-D

A convex k-gon of $\mathcal{A}(S)$ is a convex polygon with k sides if:

▶ vertices are a subset of arrangement vertices.
▶ sides are part of input segments.

Goal: count and report all such k-gons.
Problem Definition

Given: An arrangement $\mathcal{A}(S)$ of line segments S in 2-D

A convex k-gon of $\mathcal{A}(S)$ is a convex polygon with k sides if:

- vertices are a subset of arrangement vertices.
- sides are part of input segments.
Problem Definition

Given: An arrangement \(\mathcal{A}(S) \) of line segments \(S \) in 2-D

A convex \(k \)-gon of \(\mathcal{A}(S) \) is a convex polygon with \(k \) sides if:

- vertices are a subset of arrangement vertices.
Problem Definition

Given: An arrangement $\mathcal{A}(S)$ of line segments S in 2-D

A convex k-gon of $\mathcal{A}(S)$ is a convex polygon with k sides if:

- vertices are a subset of arrangement vertices.
- sides are part of input segments.
Problem Definition

Given: An arrangement $\mathcal{A}(S)$ of line segments S in 2-D

A convex k-gon of $\mathcal{A}(S)$ is a convex polygon with k sides if:

- vertices are a subset of arrangement vertices.
- sides are part of input segments.
Problem Definition

Given: An arrangement $A(S)$ of line segments S in 2-D

A convex k-gon of $A(S)$ is a convex polygon with k sides if:

- vertices are a subset of arrangement vertices.
- sides are part of input segments.

Goal: count and report all such k-gons.
Our Results

- Count all k-gons in $O(n \log n + mn)$ time and $O(n^2)$ space (for constant k)
Our Results

- Count all k-gons in $O(n \log n + mn)$ time and $O(n^2)$ space (for constant k)
- Report set of all k-gons K in $O(|K|)$ additional time and $O(mn)$ additional space
Our Results

- Count all k-gons in $O(n \log n + mn)$ time and $O(n^2)$ space (for constant k)
- Report set of all k-gons K in $O(|K|)$ additional time and $O(mn)$ additional space

Count in time much faster than the number of k-gons: $\Theta(n^k)$
Our Results

- Count all k-gons in $O(n \log n + mn)$ time and $O(n^2)$ space (for constant k)
- Report set of all k-gons K in $O(|K|)$ additional time and $O(mn)$ additional space

Count in time much faster than the number of k-gons: $\Theta(n^k)$
Our Results

- Count all k-gons in $O(n \log n + mn)$ time and $O(n^2)$ space (for constant k)
- Report set of all k-gons K in $O(|K|)$ additional time and $O(mn)$ additional space

Count in time much faster than the number of k-gons: $\Theta(n^k)$

- Counting k-gons is as hard as the 3SUM problem, for $k = 3, 4$
Counting k-gons

A vertical line L intersects at most two sides of a k-gon P.

$L \text{span}(P, L) = (a, b)$

$\text{Suggests a plane sweep based algorithm, key idea: Assign a } k\text{-gon intersecting } L \text{ to its span Update count as we sweep } L \text{ across the plane}$
Counting k-gons

A vertical line L intersects at most two sides of a k-gon P.

$\text{span}(P, L) = (a, b)$

$O(n^2)$ distinct spans (w.r.t. L) among all k-gons

Suggests a plane sweep based algorithm, key idea:

Assign a k-gon intersecting L to its span

Update count as we sweep L across the plane
Counting k-gons

A vertical line L intersects at most two sides of a k-gon P.

$\text{span}(P, L) = (a, b)$
Counting k-gons

A vertical line L intersects at most two sides of a k-gon P.

$\text{span}(P, L) = (a, b)$

- $O(n^2)$ distinct spans (w.r.t. L) among all k-gons
Counting k-gons

A vertical line L intersects at most two sides of a k-gon P.

$\text{span}(P, L) = (a, b)$

- $O(n^2)$ distinct spans (w.r.t. L) among all k-gons
- Suggests a plane sweep based algorithm, key idea:
Counting k-gons

A vertical line L intersects at most two sides of a k-gon P.

$\text{span}(P, L) = (a, b)$

- $O(n^2)$ distinct spans (w.r.t. L) among all k-gons
- Suggests a plane sweep based algorithm, key idea:
 - Assign a k-gon intersecting L to its span
Counting \(k \)-gons

A vertical line \(L \) intersects at most two sides of a \(k \)-gon \(P \).

\[
\text{span}(P, L) = (a, b)
\]

- \(O(n^2) \) distinct spans (w.r.t. \(L \)) among all \(k \)-gons
- Suggests a plane sweep based algorithm, key idea:
 - Assign a \(k \)-gon intersecting \(L \) to its span
 - Update count as we sweep \(L \) across the plane
- **Open j-gons**: All $j \leq k$ sides start left of L
Notation

- **Open j-gons**: All $j \leq k$ sides start left of L
Notation

- **Open j-gons**: All $j \leq k$ sides start left of L
 - $\sigma(a, b, j)$: Number of open j-gons with span (a, b)

- **Closed k-gons**: All k sides end left of L
- **Count**: number of k-gons left of L
Notation

- **Open j-gons**: All $j \leq k$ sides start left of L
 - $\sigma(a, b, j)$: Number of open j-gons with span (a, b)

\[
\sigma(a, b, 5) = 2
\]
Notation

- **Open j-gons**: All $j \leq k$ sides start left of L
 - $\sigma(a, b, j)$: Number of open j-gons with span (a, b)
- **Closed k-gons**: All k sides end left of L
Notation

- **Open j-gons**: All $j \leq k$ sides start left of L
 - $\sigma(a, b, j)$: Number of open j-gons with span (a, b)
- **Closed k-gons**: All k sides end left of L
 - $count$: number of k-gons left of L
Algorithm Steps

- Set $count = 0$ and $\sigma(a, b, j) = 0$, for all a, b, j
Algorithm Steps

- Set $count = 0$ and $\sigma(a, b, j) = 0$, for all a, b, j
- Compute all intersections (Event points)
Algorithm Steps

- Set $count = 0$ and $\sigma(a, b, j) = 0$, for all a, b, j
- Compute all intersections (Event points)
- For each event from left to right: Perform Updates
Algorithm Steps

- Set $count = 0$ and $\sigma(a, b, j) = 0$, for all a, b, j
- Compute all intersections (Event points)
- For each event from left to right: Perform Updates
- Return $count$
Updates at intersection \((a, b)\)
Updates at intersection \((a, b)\)

- Some \(k\)-gons complete

```
\begin{align*}
\sigma(c, b, 2) &= 1 \\
\sigma(c, a, j + 1) &= \sigma(c, b, j) \\
\sigma(a, d, j + 1) &= \sigma(b, d, j)
\end{align*}
```
Updates at intersection \((a, b)\)

- Some \(k\)-gons complete
 - \(\text{count} \;+=\; \sigma(a, b, k)\)
Updates at intersection \((a, b)\)

- Some \(k\)-gons complete
 - \(\text{count} += \sigma(a, b, k)\)
- A 2-gon begins

![Diagram showing intersections and segments](image)
Updates at intersection \((a, b)\)

- Some \(k\)-gons complete
 - \(\text{count} += \sigma(a, b, k)\)
- A 2-gon begins
 - \(\sigma(b, a, 2) = 1\)
Updates at intersection \((a, b)\)

- Some \(k\)-gons complete
 - \(\text{count} += \sigma(a, b, k)\)
- A 2-gon begins
 - \(\sigma(b, a, 2) = 1\)
- Some \(j\)-gons grow into \(j + 1\)-gons

\[L \]
\[c \]
\[a \]
\[p_i \]
\[b \]
\[d \]
Updates at intersection \((a, b)\)

- Some \(k\)-gons complete
 - \(\text{count} \ += \sigma(a, b, k)\)
- A 2-gon begins
 - \(\sigma(b, a, 2) = 1\)
- Some \(j\)-gons grow into \(j + 1\)-gons
 - For all segments \(c\) above \(a\)
Updates at intersection \((a, b)\)

- Some \(k\)-gons complete
 - \(\text{count} += \sigma(a, b, k)\)

- A 2-gon begins
 - \(\sigma(b, a, 2) = 1\)

- Some \(j\)-gons grow into \(j + 1\)-gons
 - For all segments \(c\) above \(a\)

\[\begin{align*}
\sigma(c, b, j + 1) &= \sigma(c, a, j) \\
\sigma(a, d, j + 1) &= \sigma(b, d, j)
\end{align*}\]
Updates at intersection \((a, b)\)

- Some \(k\)-gons complete
 - \(\text{count} \leftarrow \sigma(a, b, k)\)

- A 2-gon begins
 - \(\sigma(b, a, 2) = 1\)

- Some \(j\)-gons grow into \(j + 1\)-gons
 - For all segments \(c\) above \(a\)
 \[
 \sigma(c, b, j + 1) \leftarrow \sigma(c, a, j)
 \]
Updates at intersection \((a, b)\)

- Some \(k\)-gons complete
 - \(\text{count} += \sigma(a, b, k)\)
- A 2-gon begins
 - \(\sigma(b, a, 2) = 1\)
- Some \(j\)-gons grow into \(j + 1\)-gons
 - For all segments \(c\) above \(a\)
 - \(\sigma(c, b, j + 1) += \sigma(c, a, j)\)
 - For all segments \(d\) below \(b\)
Updates at intersection \((a, b)\)

- Some \(k\)-gons complete
 - \(\text{count} += \sigma(a, b, k)\)
- A 2-gon begins
 - \(\sigma(b, a, 2) = 1\)
- Some \(j\)-gons grow into \(j + 1\)-gons
 - For all segments \(c\) above \(a\)
 - \(\sigma(c, b, j + 1) += \sigma(c, a, j)\)
 - For all segments \(d\) below \(b\)
Updates at intersection \((a, b)\)

- Some \(k\)-gons complete
 - \(\text{count } + = \sigma(a, b, k)\)

- A 2-gon begins
 - \(\sigma(b, a, 2) = 1\)

- Some \(j\)-gons grow into \(j + 1\)-gons
 - For all segments \(c\) above \(a\)
 - \(\sigma(c, b, j + 1) += \sigma(c, a, j)\)
 - For all segments \(d\) below \(b\)
 - \(\sigma(a, d, j + 1) += \sigma(b, d, j)\)

Total \(O(n)\) time per intersection

Handles degenerate cases: apply pairwise updates collectively
Updates at intersection \((a, b)\)

- Some \(k\)-gons complete
 - \(\text{count} \, +\, = \sigma(a, b, k)\)
- A 2-gon begins
 - \(\sigma(b, a, 2) \, = \, 1\)
- Some \(j\)-gons grow into \(j + 1\)-gons
 - For all segments \(c\) above \(a\)
 \[\sigma(c, b, j + 1) \, +\, = \sigma(c, a, j)\]
 - For all segments \(d\) below \(b\)
 \[\sigma(a, d, j + 1) \, +\, = \sigma(b, d, j)\]

Total \(O(n)\) time per intersection
Updates at intersection \((a, b)\)

- Some \(k\)-gons complete
 - \(\text{count} + = \sigma(a, b, k)\)
- A 2-gon begins
 - \(\sigma(b, a, 2) = 1\)
- Some \(j\)-gons grow into \(j + 1\)-gons
 - For all segments \(c\) above \(a\)
 \[\sigma(c, b, j + 1) + = \sigma(c, a, j)\]
 - For all segments \(d\) below \(b\)
 \[\sigma(a, d, j + 1) + = \sigma(b, d, j)\]

Total \(O(n)\) time per intersection

Handles degenerate cases: apply pairwise updates collectively
Goal: Report all k-gons of the output set K.
Goal: Report all k-gons of the output set K.

Keep track of updates using acyclic digraph $G = (V, E, \mathcal{L})$.
Goal: Report all \(k \)-gons of the output set \(K \).

Keep track of updates using acyclic digraph \(G = (V, E, \mathcal{L}) \)

Create a vertex for the new open 2-gon
Goal: Report all k-gons of the output set K.

Keep track of updates using acyclic digraph $G = (V, E, \mathcal{L})$.

Add an edge for a j-gon growing into $j + 1$-gon.
Goal: Report all \(k \)-gons of the output set \(K \).

Keep track of updates using acyclic digraph \(G = (V, E, L) \)

Add an edge for a \(j \)-gon growing into \(j + 1 \)-gon
Goal: Report all k-gons of the output set K.

Keep track of updates using acyclic digraph $G = (V, E, \mathcal{L})$.

Add an edge for a j-gon growing into $j + 1$-gon.
Goal: Report all k-gons of the output set K.

Keep track of updates using acyclic digraph $G = (V, E, L)$

(Append vertices for completed k-gons to Q)
Goal: Report all \(k \)-gons of the output set \(K \).

Keep track of updates using acyclic digraph \(G = (V, E, \mathcal{L}) \)

Append vertices for completed \(k \)-gons to \(Q \)
Goal: Report all k-gons of the output set K.

Keep track of updates using acyclic digraph $G = (V, E, \mathcal{L})$

Recursively enumerate all k-gons
Goal: Report all k-gons of the output set K.

Keep track of updates using acyclic digraph $G = (V, E, \mathcal{L})$.

Recursively enumerate all k-gons.
Goal: Report all \(k \)-gons of the output set \(K \).

Keep track of updates using acyclic digraph \(G = (V, E, \mathcal{L}) \)

Recursively enumerate all \(k \)-gons
Goal: Report all k-gons of the output set K.

Keep track of updates using acyclic digraph $G = (V, E, \mathcal{L})$

Recursively enumerate all k-gons
Goal: Report all k-gons of the output set K.

Keep track of updates using acyclic digraph $G = (V, E, \mathcal{L})$.

Only time respecting paths are valid k-gons.
Goal: Report all k-gons of the output set K.

Keep track of updates using acyclic digraph $G = (V, E, \mathcal{L})$

K = \{(1, 2, 4, 6), (1, 2, 3, 7)\}

Report all k-gons in $O(|K|)$ additional time
3SUM Hardness

Reduction from \textsc{Point-on-3-lines} problem
3SUM Hardness

Reduction from **POINT-ON-3-LINES** problem

Given a set of lines L in plane, is there a point that lies on 3 lines?
3SUM Hardness

Reduction from Point-on-3-lines problem

Given a set of lines L in plane, is there a point that lies on 3 lines?

$$3\text{SUM} \rightarrow 3\text{-Points-on-line} \overset{\text{dual}}{\rightarrow} \text{Point-on-3-lines}$$
3SUM Hardness

Reduction from Point-on-3-lines problem

Given a set of lines L in plane, is there a point that lies on 3 lines?

$3\text{SUM} \rightarrow 3\text{-Points-on-line} \xrightarrow{\text{dual}} \text{Point-on-3-lines}$

- Reduction ensures that no two lines in L are parallel
3SUM Hardness

Reduction from **Point-on-3-lines** problem

Given a set of lines L in plane, is there a point that lies on 3 lines?

$$3\text{SUM} \rightarrow 3\text{-Points-on-line} \overset{\text{dual}}{\longrightarrow} \text{Point-on-3-lines}$$

- Reduction ensures that no two lines in L are parallel
- Compute bounding box B of the arrangement
3SUM Hardness

Reduction from Point-on-3-lines problem

Given a set of lines L in plane, is there a point that lies on 3 lines?

$3\text{SUM} \rightarrow 3\text{-Points-on-line} \xrightarrow{\text{dual}} \text{Point-on-3-lines}$

- Reduction ensures that no two lines in L are parallel
- Compute bounding box B of the arrangement
- Clip the lines around B to obtain an arrangement of segments
3SUM Hardness

Reduction from \textbf{Point-on-3-lines} problem

Given a set of lines L in plane, is there a point that lies on 3 lines?

\[3\text{SUM} \rightarrow 3\text{-Points-on-line} \xrightarrow{\text{dual}} \text{Point-on-3-lines} \]

- Reduction ensures that no two lines in L are parallel
- Compute bounding box B of the arrangement
- Clip the lines around B to obtain an arrangement of segments

\[\binom{n}{3} \text{ triangles} \Leftrightarrow \text{no Point-on-3-lines} \]
3SUM Hardness

Reduction from **POINT-ON-3-LINES** problem

Given a set of lines L in plane, is there a point that lies on 3 lines?

\[
3\text{SUM} \rightarrow 3\text{-POINTS-ON-LINE} \overset{\text{dual}}{\longrightarrow} \text{POINT-ON-3-LINES}
\]

- Reduction ensures that no two lines in L are parallel
- Compute bounding box B of the arrangement
- Clip the lines around B to obtain an arrangement of segments

\[
\binom{n}{3} \text{ triangles} \iff \text{no \ POINT-ON-3-LINES}
\]
3SUM Hardness

Reduction from Point-on-3-lines problem

Given a set of lines L in plane, is there a point that lies on 3 lines?

$$3\text{SUM} \rightarrow 3\text{-POINTS-ON-LINE} \xrightarrow{\text{dual}} \text{POINT-ON-3-LINES}$$

- Reduction ensures that no two lines in L are parallel
- Compute bounding box B of the arrangement
- Clip the lines around B to obtain an arrangement of segments

$$\binom{n}{3} \text{ triangles} \iff \text{no POINT-ON-3-LINES}$$

$$\binom{n}{4} \text{ quadrilaterals} \iff \text{no POINT-ON-3-LINES}$$
3SUM Hardness

Reduction from Point-on-3-lines problem

Given a set of lines L in plane, is there a point that lies on 3 lines?

\[3\text{SUM} \rightarrow 3\text{-Points-on-line} \xrightarrow{\text{dual}} \text{Point-on-3-lines}\]

- Reduction ensures that no two lines in L are parallel
- Compute bounding box B of the arrangement
- Clip the lines around B to obtain an arrangement of segments

\[\binom{n}{3} \text{ triangles} \Leftrightarrow \text{no Point-on-3-lines}\]

\[\binom{n}{4} \text{ quadilaterals} \Leftrightarrow \text{no Point-on-3-lines}\]

Does not extend to $k \geq 5$
Concluding Remarks

- Introduced the k-gon counting problem
- Algorithm for k-gon counting in $O(mn) \in O(n^3)$ time
- Reporting in additional $O(|K|)$ time
- 3SUM hardness for $k = 3, 4 \Rightarrow$ Significantly better than $O(n^2)$ unlikely
- Open question: faster algorithms?
Concluding Remarks

- Introduced the k-gon counting problem
Concluding Remarks

- Introduced the k-gon counting problem
- Algorithm for k-gon counting in $O(mn) \in O(n^3)$ time

3SUM hardness for $k = 3, 4 \Rightarrow$ Significantly better than $O(n^2)$ unlikely

Open question: faster algorithms?
Concluding Remarks

- Introduced the k-gon counting problem
- Algorithm for k-gon counting in $O(mn) \in O(n^3)$ time
- Reporting in additional $O(|K|)$ time
Concluding Remarks

- Introduced the k-gon counting problem
- Algorithm for k-gon counting in $O(mn) \in O(n^3)$ time
- Reporting in additional $O(|K|)$ time
- 3SUM hardness for $k = 3, 4 \Rightarrow$ Significantly better than $O(n^2)$ unlikely
Concluding Remarks

- Introduced the k-gon counting problem
- Algorithm for k-gon counting in $O(mn) \in O(n^3)$ time
- Reporting in additional $O(|K|)$ time
- 3SUM hardness for $k = 3, 4 \Rightarrow$ Significantly better than $O(n^2)$ unlikely
- Open question: faster algorithms?
Thanks!