
Computing Shortest Paths in the Plane

Pankaj K. Agarwal, Neeraj Kumar, Stavros Sintos and Subhash Suri

with Removable Obstacles

s

t

Duke University and UC Santa Barabara

s

t

Problem Description

Input: h polygonal obstacles with n vertices, source s and target t

s

t

Problem Description

Input: h polygonal obstacles with n vertices, source s and target t

An obstacle Pi can be removed by paying cost ci

s

t

Problem Description

Input: h polygonal obstacles with n vertices, source s and target t

An obstacle Pi can be removed by paying cost ci

Assumption: Obstacles are mutually disjoint and convex

s

t

Problem Description

Input: h polygonal obstacles with n vertices, source s and target t

Given a cost budget C , which obstacles should we remove

An obstacle Pi can be removed by paying cost ci

so that length of path from s to t is minimized?

Assumption: Obstacles are mutually disjoint and convex

Motivation

Classically, we deal with �nding shortest path in a �xed network

5/17

Motivation

Classically, we deal with �nding shortest path in a �xed network

But what if shortest paths are not good enough!

5/17

Motivation

Classically, we deal with �nding shortest path in a �xed network

What if we are allowed to modify the environment

What changes should we make?

Desire paths

But what if shortest paths are not good enough!

5/17

Motivation

Classically, we deal with �nding shortest path in a �xed network

What if we are allowed to modify the environment

What changes should we make?

Applications

But what if shortest paths are not good enough!

Urban Planning
Adding ‘shortcuts” to ease congestion

5/17

Motivation

Classically, we deal with �nding shortest path in a �xed network

What if we are allowed to modify the environment

What changes should we make?

Applications

Recon�guring road networks
– such as by adding �yovers

But what if shortest paths are not good enough!

5/17

Motivation

Classically, we deal with �nding shortest path in a �xed network

What if we are allowed to modify the environment

What changes should we make?

Applications

Re-organize Warehouse Layout
– Shorten frequent paths for robot

But what if shortest paths are not good enough!

5/17

Path Planning Under Uncertainity

Obstacle Pi is present in input with independent probability βi ,

not present with probability (1 − βi)

Probability of existence = βi

Path Planning Under Uncertainity

Obstacle Pi is present in input with independent probability βi ,

not present with probability (1 − βi)

Probability of existence = βi

π1

π2

Path π1 has probability 1

Path π2 has probability (1 − βi)

Path Planning Under Uncertainity

Obstacle Pi is present in input with independent probability βi ,

not present with probability (1 − βi)

Probability of existence = βi

π1

π2

Path π1 has probability 1

Path π2 has probability (1 − βi)

What is the shortest s–t path that has probability at least β?

Path Planning Under Uncertainity

Obstacle Pi is present in input with independent probability βi ,

not present with probability (1 − βi)

Probability of existence = βi

π1

π2

Path π1 has probability 1

Path π2 has probability (1 − βi)

What is the shortest s–t path that has probability at least β?

What is the most likely s–t path with length at most L?
(one that has highest probability)

Path Planning Under Uncertainity

Obstacle Pi is present in input with independent probability βi ,

not present with probability (1 − βi)

Probability of existence = βi

π1

π2

Path π1 has probability 1

Path π2 has probability (1 − βi)

What is the shortest s–t path that has probability at least β?

What is the most likely s–t path with length at most L?
(one that has highest probability)

Can reduce to the earlier cost-based model by taking negative logarithms

Related Work

Computes shortest s–t path in the plane that removes at most k obstacles

O(k2n logn) algorithm using Continuous Dijkstra

[HKS’17] Shortest Paths in the Plane with Obstacle Violations

Related Work

Computes shortest s–t path in the plane that removes at most k obstacles

O(k2n logn) algorithm using Continuous Dijkstra

[HKS’17] Shortest Paths in the Plane with Obstacle Violations

Cardinality Model
Obstacles have unit cost of removal, budget = k

Related Work

Computes shortest s–t path in the plane that removes at most k obstacles

O(k2n logn) algorithm using Continuous Dijkstra

[HKS’17] Shortest Paths in the Plane with Obstacle Violations

Cardinality Model
Obstacles have unit cost of removal, budget = k

We study the more general cost-based model of obstacle removal

Our Results

	 Problem of computing a path of length at most L and cost at most C is

NP-HARD even for vertical segment obstacles.

Our Results

	 Problem of computing a path of length at most L and cost at most C is

NP-HARD even for vertical segment obstacles.

	 An FPTAS inspired from [HKS’17] running in worst case Õ(n2h/ϵ) time

Minimum Path length with cost at most (1 + ϵ)C

Our Results

	 Problem of computing a path of length at most L and cost at most C is

NP-HARD even for vertical segment obstacles.

	 An FPTAS inspired from [HKS’17] running in worst case Õ(n2h/ϵ) time

	 A faster FPTAS running in worst case Õ(nh/ϵ2) time

Minimum Path length with cost at most (1 + ϵ)C

Length (1 + ϵ) times optimal, cost at most (1 + ϵ)C

Our Results

	 Problem of computing a path of length at most L and cost at most C is

NP-HARD even for vertical segment obstacles.

	 An FPTAS inspired from [HKS’17] running in worst case Õ(n2h/ϵ) time

	 A faster FPTAS running in worst case Õ(nh/ϵ2) time

Minimum Path length with cost at most (1 + ϵ)C

Length (1 + ϵ) times optimal, cost at most (1 + ϵ)C

	 Data structures for �xed source approximate shortest path queries in

O(log2 n/ϵ) time, two-point queries in O(log2 n/ϵ2) time

Our Results

	 Problem of computing a path of length at most L and cost at most C is

NP-HARD even for vertical segment obstacles.

	 An FPTAS inspired from [HKS’17] running in worst case Õ(n2h/ϵ) time

	 A faster FPTAS running in worst case Õ(nh/ϵ2) time

Minimum Path length with cost at most (1 + ϵ)C

Length (1 + ϵ) times optimal, cost at most (1 + ϵ)C

	 Data structures for �xed source approximate shortest path queries in

O(log2 n/ϵ) time, two-point queries in O(log2 n/ϵ2) time

Simple reduction from Partition

Our Results

	 Problem of computing a path of length at most L and cost at most C is

NP-HARD even for vertical segment obstacles.

	 An FPTAS inspired from [HKS’17] running in worst case Õ(n2h/ϵ) time

	 A faster FPTAS running in worst case Õ(nh/ϵ2) time

Minimum Path length with cost at most (1 + ϵ)C

Length (1 + ϵ) times optimal, cost at most (1 + ϵ)C

	 Data structures for �xed source approximate shortest path queries in

O(log2 n/ϵ) time, two-point queries in O(log2 n/ϵ2) time

Simple reduction from Partition

Rest of the talk

A Simple FPTAS

s

t

Observations

A Simple FPTAS

s

t

Observations

	 The desired path π must ‘cross’ all the obstacles that were removed

	 Since π has minimum length, it must only turn at obstacle vertices

A Simple FPTAS

s

t

Observations

	 The desired path π must ‘cross’ all the obstacles that were removed

	 Since π has minimum length, it must only turn at obstacle vertices

De�ne cost(π) = sum of costs of all obstacles crossed

A Simple FPTAS

s

t

Observations

	 The desired path π must ‘cross’ all the obstacles that were removed

	 Since π has minimum length, it must only turn at obstacle vertices

De�ne cost(π) = sum of costs of all obstacles crossed

What is the shortest s–t path that has cost at mostC?

A Simple FPTAS

Scale all costs such that budget C = h, the number of obstacles

9/17

A Simple FPTAS

Scale all costs such that budget C = h, the number of obstacles

Model as a graph problem:

– Nodes : s , t , obstacle vertices

9/17

A Simple FPTAS

Scale all costs such that budget C = h, the number of obstacles

Model as a graph problem:

– Nodes : s , t , obstacle vertices

– Edges : between any pair of vertices (u,v)
such that cost(uv) is at most C

c
1

9/17

c
2

c
3

Cost of red edge is c1 + c2 + c3

A Simple FPTAS

Scale all costs such that budget C = h, the number of obstacles

Model as a graph problem:

– Nodes : s , t , obstacle vertices

– Edges : between any pair of vertices (u,v)
such that cost(uv) is at most C

An edge e has two parameters:

Euclidean length `e and cost of the edge ce

c
1

9/17

c
2

c
3

A Simple FPTAS

Scale all costs such that budget C = h, the number of obstacles

Model as a graph problem:

– Nodes : s , t , obstacle vertices

– Edges : between any pair of vertices (u,v)
such that cost(uv) is at most C

An edge e has two parameters:

Euclidean length `e and cost of the edge ce

c
1

Mimics the notion of visibility graphs, we call it a viability graph

9/17

c
2

c
3

A Simple FPTAS

Scale all costs such that budget C = h, the number of obstacles

Model as a graph problem:

– Nodes : s , t , obstacle vertices

– Edges : between any pair of vertices (u,v)
such that cost(uv) is at most C

An edge e has two parameters:

Euclidean length `e and cost of the edge ce

Find shortest s–t path in this graph such that the cost of the path is at most C

c
1

Mimics the notion of visibility graphs, we call it a viability graph

9/17

c
2

c
3

A Simple FPTAS

Scale all costs such that budget C = h, the number of obstacles

Model as a graph problem:

– Nodes : s , t , obstacle vertices

– Edges : between any pair of vertices (u,v)
such that cost(uv) is at most C

An edge e has two parameters:

Euclidean length `e and cost of the edge ce

Find shortest s–t path in this graph such that the cost of the path is at most C

c
1

Mimics the notion of visibility graphs, we call it a viability graph

(1 + ϵ)-approximation using Dijkstra’s algorithm in Õ(n
2h
ϵ) time by creating O(hϵ) copies of vertices and edges

9/17

c
2

c
3

A Faster FPTAS

Key idea is to construct a sparse Viability Graph

A Faster FPTAS

Key idea is to construct a sparse Viability Graph

Roadmap

– trade a factor (1 + ϵ) in path length for e�ciency

A Faster FPTAS

Key idea is to construct a sparse Viability Graph

Roadmap

– Construct an O(n logn) size viability graph VG1 preserving L1 distances

– trade a factor (1 + ϵ) in path length for e�ciency

A Faster FPTAS

Key idea is to construct a sparse Viability Graph

Roadmap

– Construct an O(n logn) size viability graph VG1 preserving L1 distances

– Create O(1ϵ) copies of VG1, one per direction and combine them to obtain VGϵ

– trade a factor (1 + ϵ) in path length for e�ciency

Preserves pairwise distances within a factor of (1 + ϵ)

A Faster FPTAS

Key idea is to construct a sparse Viability Graph

Roadmap

– Construct an O(n logn) size viability graph VG1 preserving L1 distances

– Create O(1ϵ) copies of VG1, one per direction and combine them to obtain VGϵ

– trade a factor (1 + ϵ) in path length for e�ciency

Preserves pairwise distances within a factor of (1 + ϵ)

– Run the modi�ed Dijkstra on O(nϵ logn) size viability graph VGϵ

A Faster FPTAS

Key idea is to construct a sparse Viability Graph

Roadmap

– Construct an O(n logn) size viability graph VG1 preserving L1 distances

– Create O(1ϵ) copies of VG1, one per direction and combine them to obtain VGϵ

– trade a factor (1 + ϵ) in path length for e�ciency

Preserves pairwise distances within a factor of (1 + ϵ)

– Run the modi�ed Dijkstra on O(nϵ logn) size viability graph VGϵ

Primary challenge is to construct the graph VG1

A Sparse Viability Graph

Inspiration: L1 Visibility Graphs : [Clarkson-Kapoor-Vaidya’87]

A Sparse Viability Graph

Inspiration: L1 Visibility Graphs : [Clarkson-Kapoor-Vaidya’87]

Main Idea:

u

	 Do not need all O(n) edges adjacent to u

A Sparse Viability Graph

Inspiration: L1 Visibility Graphs : [Clarkson-Kapoor-Vaidya’87]

Main Idea:

u

v

	 Do not need all O(n) edges adjacent to u

A Sparse Viability Graph

Inspiration: L1 Visibility Graphs : [Clarkson-Kapoor-Vaidya’87]

Main Idea:

u

v

	 Do not need all O(n) edges adjacent to u

	 Take projections on a ‘split line’ `

A Sparse Viability Graph

Inspiration: L1 Visibility Graphs : [Clarkson-Kapoor-Vaidya’87]

Main Idea:

u

v

	 Do not need all O(n) edges adjacent to u

	 Take projections on a ‘split line’ `

A Sparse Viability Graph

Inspiration: L1 Visibility Graphs : [Clarkson-Kapoor-Vaidya’87]

Main Idea:

u

v

	 Do not need all O(n) edges adjacent to u

	 Take projections on a ‘split line’ `

u

v

	 Also need at most four projections on neighboring obstacles

A Sparse Viability Graph

Inspiration: L1 Visibility Graphs : [Clarkson-Kapoor-Vaidya’87]

Main Idea:

u

v

	 Do not need all O(n) edges adjacent to u

	 Take projections on a ‘split line’ `

u

v

Total size: O(n logn)

	 Also need at most four projections on neighboring obstacles

A Sparse Viability Graph

Inspiration: L1 Visibility Graphs : [Clarkson-Kapoor-Vaidya’87]

Main Idea:

u

v

	 Do not need all O(n) edges adjacent to u

	 Take projections on a ‘split line’ `

u

v

Total size: O(n logn)

We show how to construct O(n logn) size L1 Viability Graphs
edges can go through obstacles

Algorithm Overview

	 Will reuse idea of taking split line projections for [CKV’87]

Algorithm Overview

	 Will reuse idea of taking split line projections for [CKV’87]

can be naturally extended to edges of viability graph

Algorithm Overview

	 Will reuse idea of taking split line projections for [CKV’87]

can be naturally extended to edges of viability graph

However, taking projections on four neighboring obstacles is not su�cient

Algorithm Overview

	 Will reuse idea of taking split line projections for [CKV’87]

can be naturally extended to edges of viability graph

However, taking projections on four neighboring obstacles is not su�cient

We circumvent this problem by adding “bypass vertices”

Using this model we give an arguably simpler proof

of correctness for the more general viability graphs

Algorithm Overview

	 Will reuse idea of taking split line projections for [CKV’87]

can be naturally extended to edges of viability graph

However, taking projections on four neighboring obstacles is not su�cient

We circumvent this problem by adding “bypass vertices”

Using this model we give an arguably simpler proof

of correctness for the more general viability graphs

Next we describe an algorithm for constructing an L1 viability graph VG1

Obstacles with Costs ⇒ Segments with Costs

Obstacles with Costs ⇒ Segments with Costs

π1

π2

Obstacles are convex and disjoint

⇒ Shortest paths intersect zero or exactly two sides of an obstacle

Obstacles with Costs ⇒ Segments with Costs

π1

π2

Obstacles are convex and disjoint

⇒ Shortest paths intersect zero or exactly two sides of an obstacle

Assign cost ci/2 to all segments of an obstacle that has cost ci

Obstacles with Costs ⇒ Segments with Costs

π1

π2

Obstacles are convex and disjoint

⇒ Shortest paths intersect zero or exactly two sides of an obstacle

Assign cost ci/2 to all segments of an obstacle that has cost ci

Allows us to reason about geometry of line segments

Algorithm Description

v

w

Algorithm Description

v

w

`

	 Find the split line ` that splits vertices into equal sized sets Vl and Vr

Algorithm Description

v

w

`

v
′

w
′

	 Find the split line ` that splits vertices into equal sized sets Vl and Vr

	 Let v
′

be the projection of v on this split line `

– Add vertex v
′

and edge vv
′

with cost c(vv ′)

– Cost of projection segment is the sum of

costs of all obstacle segments that it intersects

Algorithm Description

v

w

`

w2

v
′

w
′

v1

w1

v2

	 Find the split line ` that splits vertices into equal sized sets Vl and Vr

	 Let v
′

be the projection of v on this split line `

– Add vertex v
′

and edge vv
′

with cost c(vv ′)
	 Find �rst segment s

′
of positive slope that intersects `

– Add two bypass vertices v1,v2 and edges vv
′

and v1v2

– Bypass edges v
1
v
2

have cost c(v
1
v
2
) = 0

– Cost of projection segment is the sum of

costs of all obstacle segments that it intersects

Algorithm Description

v

w

`

w2

v
′

w
′

v1

w1

v2

	 Find the split line ` that splits vertices into equal sized sets Vl and Vr

	 Let v
′

be the projection of v on this split line `

– Add vertex v
′

and edge vv
′

with cost c(vv ′)
	 Find �rst segment s

′
of positive slope that intersects `

– Add two bypass vertices v1,v2 and edges vv
′

and v1v2

	 Connect consecutive vertices on ` and obstacle boundary

Algorithm Description

v

w

`

w2

v
′

w
′

`

v

w

v1

w1

v2

	 Find the split line ` that splits vertices into equal sized sets Vl and Vr

	 Let v
′

be the projection of v on this split line `

– Add vertex v
′

and edge vv
′

with cost c(vv ′)
	 Find �rst segment s

′
of positive slope that intersects `

– Add two bypass vertices v1,v2 and edges vv
′

and v1v2

	 Connect consecutive vertices on ` and obstacle boundary

	 Repeat for a horizontal split line. Recurse on sets Vl and Vr .

Correctness

Su�ces to show: for any pair of obstacle vertices p,q there exists a path πpq

such that the L1 length ∥πpq∥
1
≤ ∥pq∥

1
and cost c(πpq) ≤ c(pq)

Proof Idea:

Correctness

Su�ces to show: for any pair of obstacle vertices p,q there exists a path πpq

such that the L1 length ∥πpq∥
1
≤ ∥pq∥

1
and cost c(πpq) ≤ c(pq)

Proof Idea:

p

q

Correctness

Su�ces to show: for any pair of obstacle vertices p,q there exists a path πpq

such that the L1 length ∥πpq∥
1
≤ ∥pq∥

1
and cost c(πpq) ≤ c(pq)

Proof Idea:

p

sy

sx

De�ne a region (clipped rectangle) Rpq q

Correctness

Su�ces to show: for any pair of obstacle vertices p,q there exists a path πpq

such that the L1 length ∥πpq∥
1
≤ ∥pq∥

1
and cost c(πpq) ≤ c(pq)

Proof Idea:

p

sy

sx

De�ne a region (clipped rectangle) Rpq q

Proof by induction on number of vertices in Rpq

– If Rpq contains an obstacle vertex

– If Rpq does not contains an obstacle vertex

Correctness

Su�ces to show: for any pair of obstacle vertices p,q there exists a path πpq

such that the L1 length ∥πpq∥
1
≤ ∥pq∥

1
and cost c(πpq) ≤ c(pq)

Proof Idea:

p

sy

sx

De�ne a region (clipped rectangle) Rpq q

Proof by induction on number of vertices in Rpq

– If Rpq contains an obstacle vertex

– If Rpq does not contains an obstacle vertex

(Induction Step)

(Base Case)

Induction Step

p

q

lr

r

Induction Step

p

q

lr

r

We show how to �nd an intermediate vertex r such that

Induction Step

p

q

lr

r

We show how to �nd an intermediate vertex r such that

such that ∥pr∥
1
+ ∥rq∥

1
≤ ∥pq∥

1
and cost c(pr) + c(rq) ≤ c(pq)

Induction Step

p

q

lr

r

We show how to �nd an intermediate vertex r such that

such that ∥pr∥
1
+ ∥rq∥

1
≤ ∥pq∥

1
and cost c(pr) + c(rq) ≤ c(pq)

Details are technical, relies heavily on disjointness of obstacle segments

Base Case

`

B

C
Identify three types of edges A,B and C

p

A

q

Base Case

`

B

C
Identify three types of edges A,B and CIdentify three types of edges A,B and C

– Type B and C edges cannot co-exist

p

A

q

Base Case

`

B

C
Identify three types of edges A,B and CIdentify three types of edges A,B and C

– Type B and C edges cannot co-exist

Type B edge + vertical split line

≡ Type C edge + horizontal split line

p

A

q

Base Case

`

B

Identify three types of edges A,B and CIdentify three types of edges A,B and C

– Type B and C edges cannot co-exist

Type B edge + vertical split line

≡ Type C edge + horizontal split line

Exists a path πpq in VG1 using projection and bypass vertices

p

A

q

Base Case

`

B

Identify three types of edges A,B and CIdentify three types of edges A,B and C

– Type B and C edges cannot co-exist

Type B edge + vertical split line

≡ Type C edge + horizontal split line

Exists a path πpq in VG1 using projection and bypass vertices

Easy to verify that πpq has same L1 length and cost as the segment pq

p

A

q

A Faster FPTAS

Key idea is to construct a sparse Viability Graph

Roadmap

– Construct an O(n logn) size viability graph VG1 preserving L1 distances

– Create 1/ϵ copies of VG1, one per direction and combine them to obtain VGϵ

– trade a factor (1 + ϵ) in path length for e�ciency

Preserves pairwise distances within a factor of (1 + ϵ)

– Run the slower FPTAS on O(nϵ logn) size viability graph VGϵ

Primary challenge is to construct the graph VG1

A Faster FPTAS

Key idea is to construct a sparse Viability Graph

Roadmap

– Construct an O(n logn) size viability graph VG1 preserving L1 distances

– Create 1/ϵ copies of VG1, one per direction and combine them to obtain VGϵ

– trade a factor (1 + ϵ) in path length for e�ciency

Preserves pairwise distances within a factor of (1 + ϵ)

– Run the slower FPTAS on O(nϵ logn) size viability graph VGϵ

Primary challenge is to construct the graph VG1 ✓

In Summary

In Summary

	 Motivated by applications, we study the problem of computing shortest

path among removable obstacles

In Summary

	 Motivated by applications, we study the problem of computing shortest

path among removable obstacles

	 We show that computing such a path exactly is NP-hard.

In Summary

	 Motivated by applications, we study the problem of computing shortest

path among removable obstacles

	 We show that computing such a path exactly is NP-hard.

	 A simple (1 + ϵ)-approximation follows using the idea of viability
graphs (an extension of visibility graphs)

In Summary

	 Motivated by applications, we study the problem of computing shortest

path among removable obstacles

	 We show that computing such a path exactly is NP-hard.

	 A simple (1 + ϵ)-approximation follows using the idea of viability
graphs (an extension of visibility graphs)

	 Obtain a faster approximation by constructing a sparse viability graph

In Summary

	 Motivated by applications, we study the problem of computing shortest

path among removable obstacles

	 We show that computing such a path exactly is NP-hard.

	 A simple (1 + ϵ)-approximation follows using the idea of viability
graphs (an extension of visibility graphs)

	 Obtain a faster approximation by constructing a sparse viability graph

	 Obtained data structures for approximate shortest path queries running

in polylogarithmic time

In Summary

	 Motivated by applications, we study the problem of computing shortest

path among removable obstacles

	 We show that computing such a path exactly is NP-hard.

	 A simple (1 + ϵ)-approximation follows using the idea of viability
graphs (an extension of visibility graphs)

	 Obtain a faster approximation by constructing a sparse viability graph

	 Obtained data structures for approximate shortest path queries running

in polylogarithmic time

	 Applied these results to solve a shortest path problem in a stochastic
model of obstacles

In Summary

	 Motivated by applications, we study the problem of computing shortest

path among removable obstacles

	 We show that computing such a path exactly is NP-hard.

	 A simple (1 + ϵ)-approximation follows using the idea of viability
graphs (an extension of visibility graphs)

	 Obtain a faster approximation by constructing a sparse viability graph

	 Obtained data structures for approximate shortest path queries running

in polylogarithmic time

	 Applied these results to solve a shortest path problem in a stochastic
model of obstacles

Thanks!

Backup : NP-Hardness

Simple reduction from Partition

ai

t

Gi

a1
an

.s

A is a set of integers, ai corresponds to group Gi

Backup : NP-Hardness

Simple reduction from Partition

ai

t

Gi

a1
an

.s

A is a set of integers, ai corresponds to group Gi

	 Go through the middle obstacle by paying cost ai

	 Go around it by adding a detour of length ai

Path must go through the channel

Backup : NP-Hardness

Simple reduction from Partition

ai

t

Gi

a1
an

.s

A is a set of integers, ai corresponds to group Gi

	 Go through the middle obstacle by paying cost ai

	 Go around it by adding a detour of length ai

An s–t path with length at most L = 1

2
∑ai and cost at most C =

1

2
∑ai exists

Path must go through the channel

if and only if set A can be partitioned into two equal groups.

